
A Comprehensive Introduction to Python Programming
and GUI Design Using Tkinter

Bruno Dufour

McGill Univeristy SOCS

Contents

1 Overview of the Python Language 2
1.1 Main Features. 2
1.2 Language Features. 2

1.2.1 Literals . 2
1.2.2 Variables . 4
1.2.3 Operators. 5
1.2.4 Data Structures. 6
1.2.5 Control Structures and therange() Function 10
1.2.6 Function Definitions and Function Calls. 12
1.2.7 Classes. 13

2 Python and Tkinter for RAD and Prototyping 16
2.1 Designing User Interfaces. 16
2.2 What is Tkinter? . 16
2.3 Why Tkinter? . 17
2.4 Nothing is perfect 18
2.5 Show me what you can do!. 18

3 Overview of Tkinter Widgets 24
3.1 What is a Widget . 24
3.2 The Different Widgets . 24

3.2.1 Toplevel. 24
3.2.2 Button. 25
3.2.3 Checkbutton . 25
3.2.4 Entry . 26
3.2.5 Frame. 26
3.2.6 Label . 27
3.2.7 Listbox . 27
3.2.8 Menu . 28
3.2.9 Message. 29
3.2.10 OptionMenu . 29
3.2.11 Radiobutton. 29
3.2.12 Scale . 30
3.2.13 Scrollbar . 32
3.2.14 Text . 32
3.2.15 Canvas . 32

Contents 2 /75

3.3 Additional Widgets: the Python Mega Widgets (PMW). 37

4 Geometry Managers and Widget Placement 38
4.1 What is Geometry Management?. 38
4.2 The “Pack” Geometry Manager. 38
4.3 The “Grid” Geometry Manager. 40
4.4 The “Place” Geometry Manager. 41

5 Tkinter-specific Topics 43
5.1 Specifying colors. 43
5.2 Specifying Fonts . 43
5.3 Tkinter Variables . 45

5.3.1 The Need for New Variables. 45
5.3.2 Using Tkinter Variables. 45

6 Event Handling: bringing applications to life 48
6.1 The Idea. 48
6.2 Event Types and Properties. 49
6.3 Event Descriptors. 50
6.4 Binding Callbacks to Events. 52
6.5 Unit testing and Graphical User Interfaces: Simulating Events. . . . 53

A Tkinter color names 55

1
Overview of the Python Language

1.1 Main Features

Python is an interpreted, interactive, object-oriented high-level language. Its syntax
resembles pseudo-code, especially because of the fact that indentation is used to in-
dentify blocks. Python is a dynamcally typed language, and does not require variables
to be declared before they are used. Variables “appear” when they are first used and
“disappear” when they are no longer needed.

Python is a scripting language like Tcl and Perl. Because of its interpreted nature,
it is also often compared to Java. Unlike Java, Python does not require all instructions
to reside inside classes.

Python is also a multi-platform language, since the Python interpreter is available
for a large number of standard operating systems, including MacOS, UNIX, and Mi-
crosoft Windows. Python interpreters are usually written in C, and thus can be ported
to almost any platform which has a C compiler.

1.2 Language Features

1.2.1 Literals

1.2.1.1 Integers

There are 3 kinds of integer literals:

Decimal integers: integers not starting with a ’0’ digit or the integer 0 (eg: 205).

Octal integers: integers which have a leading 0 as a prefix (eg: 0205).

1.2 Language Features 4 /75

Hexadecimal integers: integers which have 0x (or 0X) as a prefix (eg: 0x00FF0205).

Standard integers occupy 32 bits of memory, but Python allows appending ’L’ (or
’l’) to the integer to make it a long integer, which is unlimited in size (that is, as with
all unlimited things in computer science, it is only limited by the amount of available
memory).

1.2.1.2 Floats

There are two kinds of float literals:

Point Floats : floats containing a period followed by one or more digits (eg: 123.456).

Exponent Floats: floats in exponential form, ie which end with ’e’ (or ’E’) followed
by a decimal integer exponent. Note that even if the integer part has a leading
zero, it is still considered as decimal (eg: 123.456e78).

1.2.1.3 Strings

String constants in Python are enclosed either within two single quotes or within two
double quotes, interchangeably.

Prefix Description
u or U Defines a Unicode string
r or R Defines a Raw string (backslash characters are not in-

terpreted as escape characters). Mostly used for regu-
lar expressions.

If a prefix must contain both a ’U’ and an ’R’, then the ’U’ must appear before the ’R’.

Standard C escape sequences are also accepted as part of the string constants, in
addition to some escape sequences that are added by Python,as indicated below:

1.2 Language Features 5 /75

Sequence Description
\newline Ignored
\\ \
\’ Single quote
\" Double quote
\a ASCII Bell Character (BEL)
\b ASCII Backspace Character (BS)
\f ASCII Form Feed Character (FF)
\n ASCII Line Feed Character (LF)
\Nname Unicode character named ’name’ (Unicode only)
\r ASCII Carriage Return Character (CR)
\t ASCII Horizontal Tab Character (TAB)
\uhhhh Character with the 16-bit Hexadecimal value hhhh

(Unicode Only)
\Uhhhhhhhh Character with the 32-bit Hexadecimal value

hhhhhhhh (Unicode Only)
\v ASCII Vertical Tab Character (VT)
\ooo ASCII Character with the octal value ooo
\hh ASCII Character with the hexadecimal value hh

Notes:

1. Two string adjacent string literals will be concatenated at compile time. For
example,"Hello"" world!" will be concatenated into"Hello world!". This
allows to easily break string literals across multiple lines. Comments are allowed
between the parts of the string. Also, different quotation marks can be used for
each part. The different parts of the string must be enclosed in parantheses if the
string is to span multiple lines, if it is not already the case (eg for function calls).

2. String literals can also be enclosed within three double quotes, in which case
newlines within the string are become part of it.

1.2.1.4 Imaginary Numbers

Python provides built-in support for imaginary numbers. It defines1j to be equal
to
√
−1. Imaginary numbers can be written in the forma + bj, wherea andb are

integers or floats.

1.2.2 Variables

Variables are not declared in Python. Since Python is a dnamically typed language,
any variable can be assigned any value, regardless of its previous type. This also holds
for instance variables in classes. Therefore, it is a good idea to initialize all instance
variables in the constructor to make sure that memory has been allocated for them, and
in order to make sure that they can safely be used inside the class. Python used to rely
on a reference counting algorithm to free the unused variables. The newer versions of
Python (ie 2.0 beta and above) rely on a more traditional garbage collection technique.

1.2 Language Features 6 /75

This thus implies that allocated memory is automatically freed when it is no longer
used.

It is usually very useful to think of Python variables as objects, since it is in essence
how they are implemented.

1.2.2.1 Private Instance Variables

By default, all instance variables are declared as public variables. However, there is a
possibly to use name mangling to make a variable “pseudo-private”. This is done by
preceding the variable name with 2 or more underscores. In this case, the actual name
of the variable will be a combination of the class name and the variable name, without
the leading underscores removed from the class name and a single underscore being
added as a prefix to the new name. For example, inside a class named ’myclass’, a
variable named ’ my var’ would actually be internally known asmy class my var.

1.2.3 Operators

Python supports the standard C operators, along with some new operators, as described
below.

1.2.3.1 Unary Operators

Operator Description
+ Unary plus
+ Unary minus
∼ Bit inversion

1.2 Language Features 7 /75

1.2.3.2 Binary Operators

Operator Description
Arithmetic Operators

+ Binary addition
- Binary subtraction
* Binary multiplication
/ Binary division
% Remainder of the integer division
** Power

Bitwise Operators
<<, >> Bit shift
& Bitwise AND
| Bitwise OR
ˆ Bitwise XOR

Logical Operators
== Equal
!=, <> Not equal
< Greater than
> Less than
>= Greater than or equal
<= Less than or equal
is, is not Object identity
in, not in Set membership

Boolean Operators
and Boolean AND
or Boolean OR
not Boolean NOT

Python allows combining multiple logical operators into a more intuitive form to
avoid the use of the keywordand. For example, instead of writing(x > 10 and x <=
20, one could write(10 < x <= 20).

1.2.4 Data Structures

The Python language provides built-in support for some very interesting data struc-
tures: lists, tuples and dictionaries. These data structures can be classified within two
main categories: sequences and mappings. Sequences are finite ordered sets of ele-
ments. The elements of a sequence can be accessed byindexingusing non-negative
numbers. This indexing starts from 0 in Python. Mappings are also finite sets, but the
way elements of a mapping are accessed differs. Mappings use arbitrary index sets for
accessing the elements.

The Python language defines 3 main types of sequences: lists, tuples and strings
(for simplicity, I gather under the term strings ordinary strings and unicode objects).
At the current time, only one mapping type is available: the dictionary. Each of these
is discussed in details below.

1.2 Language Features 8 /75

1.2.4.1 Lists

Lists are composed of an arbitrary number of elements. Each of these elements can
have any valid type. Lists in Python are defined by enumerating the elements of a
list, separated by commas, and enclosed within square brackets. Note that lists can be
nested. For example:

[0, 1, 2, 4], [’arial’, 20, ’bold’], [1, ’a string’, [3, 4, 5]]

are valid lists.
To access an element of the list, it is necessary to know its index. The first element

has index 0. Accessing elements using their index is done using square brackets, just
like for an array reference in C or Java. For example:

Listing 1: Accessing List Elements

>> list = [’a’, ’b’, ’c’]
>> list[0]
’a’
>> list[2]
’c’ 5

>>[’a’, ’b’, ’c’][1]
’b’
>>

The elements of a list can also be modified by assigning a value to a selection, just
like it would be done for arrays in C or Java. For example:

Listing 2: Modifying lists

>> list = [’a’, ’b’, ’c’]
>> list[1] = ’d’
>> list
[’a’, ’d’, ’c’]
>> 5

When anegativeindex is specified, the length of the list is added to it before it
is used. This make a negative index “wrap” around. Therefore, -1 denotes the last
element of the list, -2 the second to last element, and so on.

It is also possible to select multiple elements of a list at a time by taking a “slice”
of the original list. Slicings are of the formlist [lower :upper]. This creates a
new sub-list contanining the elements of the original list having an indexk, lower<=
k< upper. For example:

Listing 3: Slicing

1.2 Language Features 9 /75

>> list = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>> list[1:7]
[1, 2, 3, 4, 5, 6]
>>

It is possible to assign a list to a slice to modify part of an existing list, as shown
below. Assigning an empty list to a slice deleted the slice from the original list.

Listing 4: Slice Assignment

>> list = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>> list[1:6] = [’a’, ’b’]
[0, ’a’, ’b’, 6, 7, 8, 9, 10]
>>

The colon operator has some interesting defaults. When its left-hand side is not
specified, it defaults to 0. When its right-hand side is not specified, it defaults to the
length of the list. Therefore, the Python instructionlist name[:] will return the
entire list.

The built-in functionlen() can be used to obtain the length of a list. It is also
possible to concatenate lists by using the’+’ operator.

1.2.4.2 Tuples

Tuples simply consist of a series of values enclosed within parentheses. Here is an
example of a tuple:

(’arial’, 10, ’bold’)

Tuples work exactly like lists, except for the fact that they areimmutable, which
means that their elements cannot be modified in place. However, the values stored in
the components of a tuplecanbe modified. In other words, a tuple should be thought
of as holding references (or pointers) to other objects. Consider the following two
examples. The first one shows that trying to change the elements of a tuple is not
allowed. The second one shows that it is possible to modify a mutable element which
is inside of a tuple. Note the fundamental difference between the two examples.

Listing 5: Tuple Example 1

>> list = [’a’, ’f’, ’c’]
>> tuple = (10, list, ’string constant’)
>> tuple[1]
[’a’, ’f’, ’c’]
>> tuple[1] = [’some’, ’other’, ’list’] 5

1.2 Language Features 10 /75

Traceback (innermost last):
File "<stdin>", line 1, in ?

TypeError: object doesn’t support item assignment

Listing 6: Tuple Example 2

>> list = [’a’, ’f’, ’c’]
>> tuple = (10, list, ’string constant’)
>> tuple[1]
[’a’, ’f’, ’c’]
>> tuple[1][1] = ’b’ 5

>> list
[’a’, ’b’, ’c’]
>> tuple
(10, [’a’, ’b’, ’c’], ’string constant’)
>> 10

Tuples, just like lists, can be concatenated using the’+’ operator.

1.2.4.3 Dictionaries

Dictionaries are mutable objects similar to lists, but are not restricted to integers for
indexing purposes. For example, using dictionaries allows tomap string values to
objects, and reference these objects using their associated string. This is similar to
what is done in a common english dictionary, where definitions are looked up by word.
The index for a dictionary is called akey, and can be anything except a list, a dictionary,
or other mutable types that are compared by value rather than by identity, since Python
requires that keys have a constant hash value.

Dictionaries in Python are declared by listing an arbitrary number of key/datum
pairs sperated by a comma, all enclosed within curly brackets. Key/datum pairs are of
the formkey : datum. Thus, a dictionary declaration has the following form:

{key0 : datum0, key1 : datum1, ..., keyN : datumN}
The square brackets are again used to access elements of a dictionary. However, this
time, a key is used instead of an integer index.

Here is a Python example using dictionaries:

Listing 7: Dictionary Examples

>> dict = \{"alice":"123-4567", "bob":"234-5678", "charlie":"N/A"\}
>> dict[’alice’]
’123-4567’
>> dict[’charlie’]
’N/A’ 5

>> dict[’charlie’] = ’987-6543’
>> dict
\{’alice’: ’123-4567’, ’bob’: ’234-5678’, ’charlie’: ’987-6543’\}
>>

1.2 Language Features 11 /75

1.2.5 Control Structures and therange() Function

Python supports all of the tradional control structures. They are described in detail in
this section.

1.2.5.1 If statement

The general syntax for an “if” statement is as follows:

Listing 8: If Statement Syntax

if (expr):
statements

elif (expr):
statements

elif (expr): 5

statements
else:

statements

Each condition is tested starting at the top-mostif statement until a true condition
is evaluated. If no condition is true, then the statements in theelse block are evaluated
(if present).

1.2.5.2 While statement

The general syntax for a “while” statement is as follows:

Listing 9: While Statement Syntax

while expr:
statements

else:
statements

The statements in thewhile block are executed as long asexpr is true. When
it evaluates to false (ie to 0), then the statements in theelse block are executed (if
present).

1.2.5.3 For statement

The general syntax for a “for” statement is as follows:

Listing 10: For Statement Syntax

1.2 Language Features 12 /75

for target in list:
statements

else:
statements

The statements in thefor block are evaluated for each element oflist . The
current element oflist an any given iteration is accessible in thetarget variable.
Once all elements have been processed, theelse clause is executed (if present).

Since for loops in Python are required to work on lists, the language provides the
built-in functionrange(), which is used to generate a list of numbers. Its has three
major forms, each of which returns a list of integers.

• range(upper): returns a list of consecutive integersx such that 0<= x <
upper. For example

Listing 11:

>> range(5)
[0, 1, 2, 3, 4]
>>

• range(lower, upper): returns a sorted list of consecutive integersx such
that lower<= x< upper. For example

Listing 12:

>> range(2, 8)
[2, 3, 4, 5, 6, 7]
>> range(8, 2)
[]
>> 5

• range(from, to, increment): returns a sorted list of integers starting
from from and ending atto but separated byincrement . Note that the value
of to is not included in the bound. For example,

Listing 13:

>> range(8, 4, −1)
[8, 7, 6, 5]
>> range(1, 7, 2)
[1, 3, 5]
>> 5

1.2 Language Features 13 /75

1.2.6 Function Definitions and Function Calls

Function in Python are declared using thedef keyword. The basic syntax is as follows:

Listing 14: Functions

def func name(arg1, arg2, . . ., argN):
statements

Since the language is untyped, no function definition has a return type, and param-
eters are simply listed. If a function is to return a value, the keywordreturn can be
used to return it. The same keyword used without a value will stop the excution of the
function. This also the convention that C and Java use.

Python also supports some interesting features relative to function calls. The first of
these features is that arguments can be passed and filled in two distinct ways: the tradi-
tional (ie C and Java) way, which is by position. Alternatively, Python supports filling
in arguments by name. When arguments are provided by name, then their placement in
the argument list does not matter, since the name has precedence over the place in the
list. To make this concept clearer, here are two examples illustrating the two methods
previously described:

Listing 15: Arguments Example 1 - filled in by position

>> def foo(w, x, y, z):
return (w, x, y, z)

>> foo(1, 2, 3, 4)
(1, 2, 3, 4)
>> 5

Listing 16: Arguments Example 2 - filled in by name

>> def foo(w, x, y, z):
return (w, x, y, z)

>> foo(x = 2, z = 4, w = 1, y = 3)
(1, 2, 3, 4)
>> 5

It is also possible to combine the two methods in the same function call, provided
that all arguments following the first one that is passed by name are also passed by
name. The arguments before the first one that is passed by name will all be passed by
position.

Note that multiple definitions of a single argument will raise an exception. An
exception is also raised if not all arguments receive a value, the arguments that are
ignored have been assigned a default value, as explained next.

1.2 Language Features 14 /75

The second feature of the Python language relative to function calls is that argu-
ments can receive a default value, in which case no value needs to be explicitely spec-
ified for the arguement. If a value is indeed specified, it replaces the default value
for the argument. Default values are simply assigned to the arguments in the function
declaration. Here is a very simple examples to illustrate this feature:

Listing 17: Mixed Argument Passing

>> def power(base, exp = 2):
return x ** exp

>> power(2, 3)
8
>> power(5) 5

25
>>

The only restriction imposed by the language relative to default arguments is that all
arguments following the first one that is assigned a default value must also be assigned
a default value.

By combining default arguments and named arguments, it is easy to observe that
function calls can be drastically reduced in length. This allows for faster prototyping
and can simplify repetitive calls.

Python also allows functions to be declared using *arg and **arg as arguments.
An argument of the form *arg will match any of the remaining non-named arguments
(and will be a tuple), while **arg will match the remaining named arguments, and be
of type Dictionary. This allows to define methods which can take an arbitrary number
of parameters.

1.2.7 Classes

Python being an object-oriented language, it allows to create new object types in the
form of classes. Declaring classes in Python is trivial. Here is the general syntax for a
class declaration:

Listing 18: Class Declaration Syntax

classclassname inheritancelist:
classvariables

method0(arg0, arg1, . . ., argN):
statements 5

method0(arg0, arg1, . . ., argN):
statements

methodM(arg0, arg1, . . ., argN): 10

statements

1.2 Language Features 15 /75

The inheritance list argument is optional. It must be included in brackets
if present. It can contain one or more class names, separated by commas. It will most
often contain only one class name: the base class of the current class, ie the class that
it inherits from.

Python supports multiple inheritance in the form ofmixin classes. These classes
inherit from multiple base classes (ie theinheritance list contains more than
one class. Python uses a depth-first search, left-to-right strategy to find attributes in
multiple inheritance cases. Whenever a list of base classes is specified, the leftmost
class will be searched first for a specific attribute, followed by all of its base classes.
If nothing is found in these classes, then the second base class will be searched in the
same way, and so on.

Python has no access specifier (like private, public or protected in Java). By default,
all methods declared within a class are public. Simulating private methods is still
possible by using the same name mangling feature as it was done for variables (see
section1.2.2.1on page5). This is done by preceding the method name by two or more
underscores.

Inside a class, theself keyword refers to the current instance of this class.

1.2.7.1 Special function names

Python defines some special function names that have a predefined meaning. These re-
served names all have the formspecial name , so as to minimize the possibility
of name conflicts. The following table lists the most common ones and describes their
meaning.

1.2 Language Features 16 /75

Method Description
init The class constructor. Use this method to assign val-

ues to instance variables in order to allocate space for
them and thus avoid runtime errors that could occur if
a use occurs before a definition. This method can take
parameters if needed.
If the base class defines aninit method, call it us-
ing the form baseclass name. init (self[,
args]).
Constructors cannot return a value.

del (self) The class destructor. If the base class defines this
method, then it must be called to ensure proper destr-
cution of the instance.

str (self) String representation of a class. It is the equivalent
of thetoString() method in Java. It must return a
string object describing the instance.

repr (self) “Official” string representation of a class. This method
should also return a string, but the description returned
by this method should be more complete and useful,
since it is usually used for debugging purposes. The
Python Language Reference states that this represen-
tation should usually be a valid python statement that
allows to recreate the instance of a class.

cmp (self, other) Used to compare two instances of a class. Must re-
turn a negative integer ifself < other, zero ifself
= other and a positive integer ifself > other.
NOTE: Python 2.1 introduces thelt , le ,
eq , ne , gt and ge methods, which

allow to extend comparions to common operators.
This is very similar to operator overloading in C++.

nonzero (self) Truth value testing. Should return 0 or 1 only, depend-
ing on whether the instance should evaluate to false or
not.

2
Python and Tkinter for RAD and

Prototyping

2.1 Designing User Interfaces

User interfaces are what allows end users to interact with an application. An application
can be excellent, but without a good user interface, it becomes more difficult to use,
and less enjoyable. It is thus very important to design good user interfaces.

Designing user interface takes place at two different levels: the graphical level and
the event level. Graphical elements of a user interface are calledwidgets. Widgets are
basic components like buttons, scrollbars, etc. But user interfaces involve more than a
collection of widgets placed in a window. The application must be able to respond to
mouse clicks, keyboard actions or system events such as minimizing the window. For
this to happen, events must be associated to some pieces of code. This process is called
binding. The next two chapters will cover each level in more details, but this chapter
will present an overview of Tkinter and explain why it has become the leading GUI
toolkit for the Python language.

2.2 What is Tkinter?

Tkinter is an open source, portable graphical user interface (GUI) library designed
for use in Python scripts. Tkinter relies on the Tk library, the GUI library used by
Tcl/Tk and Perl, which is in turn implemented in C. Thus, Tkinter is implemented
using multiple layers.

Several competing GUI toolkits are available to use with the Python language,
namely:

2.3 Why Tkinter? 18 / 75

wxPython : a wrapper extension for wxWindows, a portable GUI library originally
developed for the C++ language. It is the second most popular GUI toolkit for
Python since it is considered excellent for complex interface design.

JPython (Jython): since it is implemented in java, JPython has access to Java GUI
libraries, namely SWING and AWT. Recently, JTkinter has been implemented
and provides a Tkinter port to JPython using the Java Native Interface (JNI).

PyKDE / PyQt, PyGTK: these packages provide an access to KDE and Gnome GUI
libraries to python scripts.

Win32all.exe: provides access to Microsoft Foundation Classes (MFC) to python
scripts. It is limited to run on MS Windows only.

WPY : a GUI library that can be used on both Microsoft Windows and UNIX X Win-
dows. This library uses the MFC coding style.

X11 : a library based on the X Windows and Motif libraries allowing excellent control
of the X11 environment, but are limited to run on X Windows OS’s only.

2.3 Why Tkinter?

With all the competing GUI toolkits available for the Python language, what makes
Tkinter stand out of the rest? Why is it the most popular toolkit for use interface
design?

To find the answer, one must look at the advantages that it offers.

1. Layered designThe layered approach used in designing Tkinter gives Tkinter
all of the advantages of the TK library. Therefore, at the time of creation, Tkinter
inherited from the benefits of a GUI toolkit that had been given time to mature.
This makes early versions of Tkinter a lot more stable and reliable than if it had
been rewritten from scratch. Moreover, the conversion from Tcl/Tk to Tkinter is
really trivial, so that Tk programmers can learn to use Tkinter very easily.

2. AccessibilityLearning Tkinter is very intuitive, and therefore quick and painless.
The Tkinter implementation hides the detailed and complicated calls in simple,
intuitive methods. This is a continuation of the Python way of thinking, since the
language excels at quickly building prototypes. It is therefore expected that its
preferred GUI library be implemented using the same approach. For example,
here is the code for a typical “Hello world”-like application:

Listing 19: A Simple Application

from Tkinter import *
root = Tk()
root.title(’A simple application’)
root.mainloop()

2.4 Nothing is perfect . . . 19 /75

The first 2 lines allow to create a complete window. Compared to MFC pro-
gramming, it makes no doubt that Tkinter is simple to use. The third line sets the
caption of the window, and the fourth one makes it enter its event loop.

3. Portability Python scripts that use Tkinter do not require modifications to be
ported from one platform to the other. Tkinter is available for any platform
that Python is implemented for, namely Microsoft Windows, X Windows, and
Macintosh. This gives it a great advantage over most competing libraries, which
are often restricted to one or two platforms. Moreover, Tkinter will provide the
native look-and-feel of the specific platform it runs on.

4. Availability Tkinter is now included in any Python distribution. Therefore, no
supplementary modules are required in order to run scripts using Tkinter.

2.4 Nothing is perfect . . .

Tkinter has many advantages that make it the primary choice for UI design. However,
it has a drawback which originates directly from its imlementation: it has a significant
overhead due to its layered implementation. While this could constitute a problem with
older, slower machines, most modern computers are fast enough so as to cope with the
extra processing in a reasonable amount of time. When speed is critical, however,
proper care must be taken so as to write code that is as efficient as possible.

Even if the overhead tends to become less relevant with time, there is still a dis-
advantage to this layered implementation that is not going to fade away: the source
code for the Tkinter library is only a shell that provides Tk’s functionality to Python
programs. Therefore, in order to understand what the Tkinter source code does, pro-
grammers need to understand the source code of the Tk library, which is in turn written
in C. While certainly not impossible, this requires more work from programmers and
can be quite time consuming.

2.5 Show me what you can do!

In order to fully understand the advantages that Tkinter has to offer, it is necessary to
see some examples demonstrating just how simple programming using this toolkit can
be. Let’s start with a more detailed explanation of the example presented above. For
simplicity, the listing of the complete source of the example is reproduced again below.

Listing 20: A very simple application

from Tkinter import *
root = Tk()
root.title(’A simple application’)
root.mainloop()

2.5 Show me what you can do! 20 /75

While this example is almost the smallest Tkinter program that can be written (the
third line is optional, but was added to make the application slightly more interesting).
Let’s analyze the code line by line.

from Tkinter import *

This line imports the whole Tkinter library. It must present in every Tkinter program.

root = Tk()

This line creates a complete window, called theTk root widget. There should be only
one root widget per application, and it must be created before all other widgets. This
does not mean that Tkinter applications cannot have multiple windows at the same
time. More complex examples showing how to create multiple windows within a single
application will be discussed later.

root.title(’A simple application’)

This line invokes a method of the Tk root widget instance to set its title to ’A simple
application’. For the purposes of this example, this is the simplest way of displaying
text in the window. The next example will use another widget to achieve a similar goal.

root.mainloop()

The call tomainloop makes the application enter itsevent loop, ie it makes it able to
respond to user events, such as mouse events and keyboard events.

The next example is very similar to the first example, but it uses newwidgets(visual
components) to display some text and exit the application. Widgets will be discussed
in the next chapter.

Listing 21: Creating widgets

from Tkinter import *

def quit():
import sys; sys.exit()

5
root = Tk()
lbl = Label(root, text="Press the button below to exit")
lbl.pack()
btn = Button(root, text="Quit", command=quit)
btn.pack() 10
root.mainloop()

This example introduces some new concepts. First of all, it creates new widgets to
put on the root window. Also, it responds to a specific user event (a click on the “Quit”
button) by exiting the program.

def quit():
import sys; sys.exit()

2.5 Show me what you can do! 21 /75

These two lines are not Tkinter-specific. They simply create a function which termi-
nates the application when invoked.

lbl = Label(root, text="Press the button below to exit")

This line creates a new instance of theLabel class. The first argument of any widget
constructor is always tomasterwidget, in other words to widget which will hold the
new widget. In this case, the Tk root widget is specified as master, so that the new
widgets will appear in the window we have created. The following arguments are
usually passed by keyword, and represent various options of the widget. The available
options depend on the widget type. Widgets will be discussed in details in chapter3. In
this specific case, the only option that is needed is the text to be displayed by the widget.
Widgets have their default value for all of the available options, so that they do not need
to be specified unless the default value does not fit the needs of the programmer.

lbl.pack()

Even though a instance of theLabel class was created by the previous line, it does not
yet appear on the root window. Ageometry managerneeds to be used in order to place
the new widget in its master widget. In this case, the packer does this in a very simple
way. Its default behaviour is to pack every new widget in a column, starting at the top
of the master. Geometry managers will be discussed in greater details in chapter4.

btn = Button(root, text="Quit", command=quit)
btn.pack()

These two lines again create a new widget, but this time it is an instance of the Button
class. This button will display the text “Quit”, and thequit function will be invoked
when it is clicked. This packer is once again responsible for placing this widget on the
master window.

root.mainloop()

Once all widgets have been created,root.mainloop() is called in order to enter the
event loop and allow the widgets to receive and react to user events (in this case a click
on the button).

For the next example, we will rewrite Example 2 (above) to make it into a class.
This is usually how more complex Tkinter programs are implemented, since it is a
much cleaner way to organize things.

Listing 22: An object-oriented approach

from Tkinter import *

classExample3:
def init (self, master):

self.lbl = Label(master, text="Press the button below to exit") 5
self.lbl.pack()
self.btn = Button(master, text="Quit", command=self.quit)
self.btn.pack()

2.5 Show me what you can do! 22 /75

def quit(self): 10
import sys; sys.exit()

root = Tk()
ex3 = Example3(root)
root.mainloop() 15

This example defines a new class:Example3. This class only has a constructor
and aquit method. Thequit method is almost identical to thequit function from
Example 2, except that it must take a parameter,self, to receive a reference to the
class instance when invoked. For more details, see section1.2.7on page13.

For the last example in this section, let’s build a larger interface. This fourth ex-
ample will include many widgets and more complex widget placement. Do not worry
about the implementation details for now, since everything will be covered in the sub-
sequent sections. The code for this example is as follows:

Listing 23: A more complex example

from Tkinter import *

classExample4:
def init (self, master):

showInfo needs to know the master 5
self.master= master
Create a frame to hold the widgets
frame = Frame(master)

Create a Label to display a header 10
self.headLbl= Label(frame, text="Widget Demo Program", relief=RIDGE)
self.headLbl.pack(side=TOP, fill =X)

Create a border using a dummy frame with a large border width
spacerFrame= Frame(frame, borderwidth=10) 15

Create another frame to hold the center part of the form
centerFrame= Frame(spacerFrame)
leftColumn = Frame(centerFrame, relief=GROOVE, borderwidth=2)
rightColumn= Frame(centerFrame, relief=GROOVE, borderwidth=2) 20

Create some colorful widgets
self.colorLabel= Label(rightColumn, text="Select a color")
self.colorLabel.pack(expand=YES, fill =X)

25
entryText= StringVar(master)
entryText.set("Select a color")
self.colorEntry = Entry(rightColumn, textvariable=entryText)
self.colorEntry.pack(expand=YES, fill =X)

30
Create some Radiobuttons
self.radioBtns= []
self.radioVal = StringVar(master)
btnList = ("black", "red", "green", "blue", "white", "yellow")
for color in btnList: 35

self.radioBtns.append(Radiobutton(leftColumn, text=color, value=color, indicatoron=TRUE,

2.5 Show me what you can do! 23 /75

variable=self.radioVal, command=self.updateColor))
else:

if (len(btnList) > 0):
self.radioVal.set(btnList[0]) 40
self.updateColor()

for btn in self.radioBtns:
btn.pack(anchor=W)

45
Make the frames visible
leftColumn.pack(side=LEFT, expand=YES, fill =Y)
rightColumn.pack(side=LEFT, expand=YES, fill =BOTH)
centerFrame.pack(side=TOP, expand=YES, fill =BOTH)

50
Create the Indicator Checkbutton
self.indicVal = BooleanVar(master)
self.indicVal.set(TRUE)
self.updateIndic()
Checkbutton(spacerFrame, text="Show Indicator", command=self.updateIndic, 55

variable=self.indicVal).pack(side=TOP, fill =X)

Create the Color Preview Checkbutton
self.colorprevVal= BooleanVar(master)
self.colorprevVal.set(FALSE) 60
self.updateColorPrev()
Checkbutton(spacerFrame, text="ColorPreview", command=self.updateColorPrev,

variable=self.colorprevVal).pack(side=TOP, fill =X)

Create the Info Button 65
Button(spacerFrame, text="Info", command=self.showInfo).pack(side=TOP, fill =X)

Create the Quit Button
Button(spacerFrame, text="Quit!", command=self.quit).pack(side=TOP, fill =X)

70
spacerFrame.pack(side=TOP, expand=YES, fill =BOTH)
frame.pack(expand=YES, fill =BOTH)

def quit(self):
import sys; sys.exit() 75

def updateColor(self):
self.colorLabel.configure(fg=self.radioVal.get())
self.colorEntry.configure(fg=self.radioVal.get())

80
def updateIndic(self):

for btn in self.radioBtns:
btn.configure(indicatoron=self.indicVal.get())

def updateColorPrev(self): 85
if (self.colorprevVal.get()):

for btn in self.radioBtns:
color = btn.cget("text")
btn.configure(fg=color)

else: 90
for btn in self.radioBtns:

btn.configure(fg="black")

2.5 Show me what you can do! 24 /75

def showInfo(self):
toplevel = Toplevel(self.master, bg="white") 95
toplevel.transient(self.master)
toplevel.title("Program info")
Label(toplevel, text="A simple Tkinter demo", fg="navy", bg="white").pack(pady=20)
Label(toplevel, text="Written by Bruno Dufour", bg="white").pack()
Label(toplevel, text="http://www.cs.mcgill.ca/˜bdufou1/", bg="white").pack() 100
Button(toplevel, text="Close", command=toplevel.withdraw).pack(pady=30)

root = Tk()
ex4 = Example4(root) 105
root.title(’A simple widget demo’)
root.mainloop()

This example may look long at first, but it is only about 100 lines long, includ-
ing comments and blank lines. Considering the fact that it creates two windows and
numerous widgets, and that it responds to user events, the source is on fact relatively
short. It could have been written in a yet shorter form, but this would have made the
source more difficult to understand. An interesting experiment innvolves running this
program and trying to resize its window. Widgets modify their size to accomodate the
new window size as much as possible. This behaviour is a demonstration of Tkinter’s
geometry managers at work.

Finally, this application demonstrates how easy widget configuration is in Tkinter.
The Checkbuttons even reconfigure widgets on the fly, using only a few lines of code.
Note how the window is resized when the indicator option for the Radiobuttons is
turned on and off.

3
Overview of Tkinter Widgets

3.1 What is a Widget

According to the Free On-Line Dictionary of Computing, the definition of a widget is:

widget: [possibly evoking ”window gadget”] In graphical user interfaces,
a combination of a graphic symbol and some program code to perform a
specific function. E.g. a scroll-bar or button. Windowing systems usually
provide widget libraries containing commonly used widgets drawn in a
certain style and with consistent behaviour.

A widget is therefore a graphical object that is available from the Tkinter library. It
is a kind of graphical building block. Intuitively, widgets are implemented as classes in
Tkinter. Each widget therefore has a constructor, a destructor, its own set of properties
and methods, and so on. While most other GUI toolkits have a very complex widget
hierarchy, Tkinter’s hierarchy is extremely simple. All widgets (like Button, Checkbut-
ton, etc.) are dereived from the Widget class. All widget subclasses occupy the same
level in the hierachy tree.

3.2 The Different Widgets

3.2.1 Toplevel

The Toplevel is technically not a widget, although this is more or less transparent to the
user.

3.2 The Different Widgets 26 /75

3.2.2 Button

The Button widget is a rectangular widget that is able to display text. This text can
occupy several lines (if the text itself contains newlines or if wrapping occurs). More-
over, this text can have an underlined character (usually indicating a keyboard shortcut).
Buttons are usually used to execute an action when they are clicked, so they offer the
command option which associates a callback with the event corresponding to a mouse
click with the left mouse button on the widget.

The Button widget provides the following options:

Option Description
default Specifies one of three states (DISABLED, NORMAL,

ACTIVE) which determines if the button should be
drawn with the style used for default buttons.

The Button widget provides the following methods:

Method Description
flash() Redraws the button several times, alternating between

active and normal appearance.
invoke() Invokes the callback associated with the button widget.

3.2.3 Checkbutton

The Checkbutton displays some text (or image) along with a small square called in-
dicator. The indicator is drawn differently depending on the state of the checkbutton
(selected or not). The Checkbutton widget supports the following option:

Option Description
indicatoron Specifies wheter the indicator should be drawn or not.

If false, the Checkbutton acts like a toggle button.
offvalue Specifies the value to store in the variable associated

with the Checkbutton when it is not selected.
onvalue Specifies the value to store in the variable associated

with the Checkbutton when it is selected.
selectcolor Specifies the background color to use for the widget

whenever it is selected. This color applies to the indi-
cator only ifindicatoron is TRUE. It applies to the
whole widget when this option is turned off.

variable Specifies the name of a Tkinter variable that is to
be assigned the values specified by theonvalue and
offvalue options.

The Checkbutton widget defines the following methods:

3.2 The Different Widgets 27 /75

Method Description
deselect() Deselects the checkbutton and stores the value speci-

fied by the offvalue option to its associated variable.
flash() Redraws the button several times, alternating between

active and normal colors.
invoke() Simulates a click on the widget (toggles the state, up-

dates the variable and invokes the callback associated
with the checkbutton, if any).

select() Selects the checkbutton and stores the value specified
by the onvalue option to its associated variable.

toggle() Similar to invoke(), but does not invoke the callback
associated with the checkbutton.

3.2.4 Entry

The Entry widget allows users to type and edit a single line of text. A portion of this
text can be selected.

The Entry widget provides the following options:

Option Description
show Controls how to display the contents of the widget.

If non-empty, the widget will replace characters to be
displayed by the first character the specified string. To
get a password entry widget, use ”*”.

The Entry widget defines the following methods:

Method Description
delete(index), delete(from,to) Delete the character at index, or within the given range.

Use delete(0, END) to delete all text in the widget.
get() Returns the current contents of the widget.
insert(index, text) Inserts text at the given index. Use insert(INSERT,

text) to insert text at the cursor, insert(END, text) to
append text to the widget.

3.2.5 Frame

The Frame widget is a rectangular container for other widgets. It is primarily used as
a gemometry master since it allows to group widgets. It can have an unvisible border
which is useful to space widgets. It can also have a visible border with a 3D effect, or
no border at all.

The Frame widget provides the following options:

3.2 The Different Widgets 28 /75

Option Description
cursor Specifies the mouse cursor to be used when the cursor

is within the frame.
takefocus Specifies whether the user should be able to move the

focus to this widget by using the tabulation key (Tab).
width, height Specifies the size of the widget.

The Frame widget does not provide any methods except the standard Widget meth-
ods.

3.2.6 Label

The Label widget is used to display text. It can only display text in a single font at a
time. The text can span more than one line. In addition, one character in the text can
be underlined, usually indicating a keyboard shortcut.

The Label widget provides the following options:

Option Description
anchor Specifies how the text should be placed in a widget.

Use one of N, NE, E, SE, S, SW, W, NW, W, NW,
CENTER.

bitmap Specifies the bitmap to be displayed by the widget. If
the image option is given, this option is ignored.

image Specifies the image to be displayed by the widget.
If specified, this takes precedence over the text and
bitmap options.

justify Defines how to align multiple lines of text relative to
each others. Use LEFT, RIGHT, or CENTER. Differs
from anchor in that justify specifies how to align mul-
tiple lines of text relative to each other.

text Specifies the text to be displayed by the widget.
textvariable Specifies the name of a variable that contains the text

to be displayed by the widget. If the contents of the
variable is modified, the widget will be updated ac-
cordingly.

The Label widget does not provide any methods except the standard Widget meth-
ods.

3.2.7 Listbox

The Listbox widget displays a list of strings. Each string is displayed on a separate
line. It allows to insert, modify or delete strings from the list. The listbox can only
contain text items, and all items must have the same font and colour. Depending on the
widget configuration, the user can choose one or more alternatives from the list.

The Listbox widget provides the following options:

3.2 The Different Widgets 29 /75

Option Description
selectmode Specifies the selection mode. One of SINGLE,

BROWSE, MULTIPLE, or EXTENDED. Default is
BROWSE. Use MULTIPLE to get checklist behavior,
EXTENDED if the user usually selects one item, but
sometimes would like to select one or more ranges of
items.

xscrollcommand,
yscrollcommand Used to connect a listbox to a scrollbar. These options

should be set to theset methods of the corresponding
scrollbars.

The Listbox widget defines the following methods:

Method Description
delete(index),
delete(first, last) Deletes one or more items. Use delete(0, END) to

delete all items in the list.
get(index) Gets one or more items from the list. This function

returns the string corresponding to the given index (or
the strings in the given index range). Use get(0, END)
to get a list of all items in the list. Use ACTIVE to get
the selected (active) item(s).

insert(index, items) Inserts one or more items at given index (index 0 is
before the first item). Use END to append items to the
list. Use ACTIVE to insert items before the selected
(active) item.

size() Returns the number of items in the list.

3.2.8 Menu

The Menu widget is used to implement toplevel, pulldown, and popup menus.
The Menu widget provides the following options:

Option Description
postcommand If specified, this callback is called whenever Tkinter

is about to display this menu. If you have dynamic
menus, use this callback to update their contents.

tearoff If set, menu entry 0 will be a “tearoff entry”, which is
usually a dashed separator line. If the user selects this
entry, Tkinter creates a small Toplevel with a copy of
this menu.

tearoffcommand If specified, this callback is called when this menu is
teared off.

title Specifies the title of menu.

The Menu widget defines the following methods:

3.2 The Different Widgets 30 /75

Method Description
add(type, options. . .) Appends an entry of the given type to the menu. The

type argument can be one of “command”, “cascade”
(submenu), “checkbutton”, “radiobutton”, or “separa-
tor”.

insert(index, type, options. . .) Same as add and friends, but inserts the new item at
the given index.

entryconfig(index, options. . .) Reconfigures the given menu entry. Only the given
options are changed.

delete(index) Deletes one or more menu entries.

3.2.9 Message

The Message widget is used to display multiple lines of text. It is very similar to a plain
label, but can adjust its width to maintain a given aspect ratio.

The Message widget provides the following option:

Option Description
aspect Specifies a non-negative integer describing the aspect

ratio of the widget. This integer is taken to be the
value of 100 * width / height. Default is 150, i.e.
width:height = 1.5:1.

The Label widget does not provide any methods except the standard Widget meth-
ods.

3.2.10 OptionMenu

OptionMenu inherits from Menubutton. It is used to display a drop-down list of op-
tions. It only defines a constructor of the form:

OptionMenu(master, variable, value, *values)

where master is themasterwidget of this OptionMenu,variable is a Tkinter Variable
(see section5.3on page45), valueand*valuesare the values displayed by the Option-
Menu. The documentation states thatvaluewill be the default variable, but it is not
the case. The only point in having a separatevalueargument is to ensure that at least
one value is to be displayed. To set the default value (or any value at any point of the
execution), usevariable.set(value).

3.2.11 Radiobutton

The Radiobutton widget used to implement one-of-many selections. Radiobuttons can
contain text or images, and you can associate a callback with each button to be excuted
when the button is pressed. Each group of Radiobutton widgets should be associated
with a single variable. Each button then represents a single value for that variable.

The Radiobutton widget provides the following options:

3.2 The Different Widgets 31 /75

Option Description
indicatoron Specifies whether the indicator should be drawn or not.

If false, the Radiobutton behaves like a toggle Button.
selectcolor Specifies a background color to use when the widget is

selected. If “indicatoron” is true, then the color applies
to the indicator, otherwise it applies to the background
of the widget.

value Specifies the value to store in the variable when this
button is selected (see “variable” below)

variable Specifies a Tkinter Variable (see section5.3 on page
45) that holds the value for the currently selected Ra-
diobutton

The Radiobutton widget defines the following methods:

Method Description
select() Selects the Radiobutton and stores its value in its Tk-

inter variable.
deselect() Deselects the Radiobutton. The value of its associated

variable cannot be used (variable.get() will throw an
exeception).

invoke() Simulates a mouse click on the Radiobutton. Same as
select() but also executes the callback, if there is one.

3.2.12 Scale

The Scale widget is used to display a slider which allows the user to select a value
within a specified range.

The Scale widget provides the following options:

3.2 The Different Widgets 32 /75

Option Description
digits Specifies the number of significant digits used when

converting a value to a string. If negative, Tkinter en-
sures that every possible slider position will be con-
verted to a different string while using the minimum
number of digits.

from , to Specifies the range of values for the Scale
label Specifies a string to be displayed by the Scale.
length Specifies the width or height of the Scale, in screen

pixels, depending on its orientation.
orient Defines the orientation of the scale. One of HORI-

ZONTAL or VERTICAL.
resolution If greater than zero, then all Scale values will be

rounded to multiples of this value. If less than zero,
no rouding occurs. Default is 1 (scale takes integer
values only).

showvalue Specifies whether the scale should display its current
value. Default is TRUE.

sliderlength Specifies the length of the slider, in screen units. De-
fault is 30.

sliderrelier Specifies the relief used to draw the slider.
tickinterval Specifies the spacing between tick marks displayed by

the Scale. If it is 0, no tick marks are displayed.
troughcolor Specifies the color used to fill the trough area.
variable Specifies a Tkinter variable to hold the value of the

scale.

The Scale widget defines the following methods:

Method Description
coords(value=None) Returns the coordinates of a point along the center of

the trough that corresponds tovalue. The current value
of the scale is used ifvalueis not specified.

get() Gets the current scale value. Tkinter returns an integer
if possible, otherwise a floating point value is returned.

identity(x, y) Returns a string describing which part of the Scale is
situated at the location (x, y). TROUGH1 indicates a
position above or on the left of the slider, TROUGH2 a
position down or right of the slider, SLIDER a position
on the SLIDER, and an empty string a position outside
the Scale.

set() Sets the scale value.

3.2 The Different Widgets 33 /75

3.2.13 Scrollbar

The Scrollbar widget is a typical scrollbar, with arrows at both ends and a slider portion
in the middle. Unlike typical scrollbars, its color can be modified.

The Scrollbar widget provides the following options:

Option Description
command Used to update the associated widget. This is typically

the xview or yview method of the scrolled widget.
If the user drags the scrollbar slider, the command is
called as callback(MOVETO, offset) where offset 0.0
means that the slider is in its topmost (or leftmost) po-
sition, and offset 1.0 means that it is in its bottommost
(or rightmost) position. If the user clicks the arrow but-
tons, or clicks in the trough, the command is called as
callback(SCROLL, step, what). The second argument
is either ”-1” or ”1” depending on the direction, and
the third argument is UNITS to scroll lines (or other
units relevant for the scrolled widget), or PAGES to
scroll full pages.

orient Defines how to draw the scrollbar. Use one of HORI-
ZONTAL or VERTICAL. Default is VERTICAL.

The Scrollbar widget defines the following methods:

Method Description

3.2.14 Text

3.2.15 Canvas

The canvas widget provides the basic graphics facilities for Tkinter, and so more ad-
vanced functions. Drawing on the canvas is done by creating various items on it. It is
important to note at this stage that items arenot widgets, even though they are similar
in many ways. Each item on a canvas is enclosed by a bounding box, which is defined
using 2 points: the top-left corner and the bottom-right corner of the box. Tkinter uses
two coordinate systems simultaneously: the canvas coordinate system and the window
coordinate system. Both systems express positions relative to the top-left corner, with
X-coordinates increasing to the right and Y-coordinates increasing downwards. How-
ever, the origin for the two systems is different. The window system expresses the
coordinates by placing the origin at the top-left corner of the visible portion of the can-
vas, while the canvas system places its origin at the top-corner of the canvas widget,
even it is not visible. The difference is important when handling mouse events bound
to the canvas since the event object receives its coordinates in the window system.
Luckily, the canvas widget provides the necessary methods to convert coordinates to
the canvas system, through calls to the canvasx() and canvasy() methods.

The Tkinter canvas supports the following standard items (more can also be added):

3.2 The Different Widgets 34 /75

• Arc: arc, chord, pieslice

• Bitmap: builtin or read from an XBM file

• Image: a BitmapImage or PhotoImage instance

• Line

• Oval: circle or ellipse

• Polygon

• Resctangle

• Text

• Window: used to place other widgets on the canvas (makes the canvas widget act
like a geometry manager)

Apart from their bounding box, all canvas items can be referenced using their
unique item ID, which is assigned at the time they are created, and is returned by any
of the item constructors. Tkinter also provides a usefull way of working with items:
the tags. A number of strings, called tags, can be associated with a canvas item, and
more than one item can have the same tag. Items can then be referenced using those
tags (see section3.2.15.1on page36 for details). Canvas items can also be bound to
events, using the tagbind() method.

The Canvas widget provides the following options:

Option Description
closeenough Specifies a float defining how close to an item the

mouse cursor has to be before it is considered to be
over it (a higher value means that the item will selected
more readily). Default is 1.0.

confine If TRUE (default), it is not allowed to set the canvas
view outside of the region defined by “scrollregion”
(see below).

scrollregion Defines the region that is considered to be the bound-
ary of all items in the canvas. It is used for scrolling
purposes, in order to limit the scroll actions to a defi-
nite area.

xscrollcommand,
yscrollcommand Specifies the function used to interact with a scrollbar.
xscrollincrement, yscrollincrement Specifies the increment for horizontal and vertical

scrolling, respectively.

The Canvas widget defines the following methods:

3.2 The Different Widgets 35 /75

Method Description
createarc(bbox, options) Creates anarc canvas item and returns its item ID.
createbitmap(position, options) Creates abitmapcanvas item and returns its item ID.
createimage(position, options) Creates animagecanvas item and returns its item ID.
createline(coords, options) Creates aline canvas item and returns its item ID.
createoval(bbox, options) Creates anovalcanvas item and returns its item ID.
createpolygon(coords, options) Creates apolygoncanvas item and returns its item ID.
createrectangle(coords, options) Creates arectanglecanvas item and returns its item ID.
createtext(position, options) Creates atextcanvas item and returns its item ID.
createwindow(position, options) Places a Tkinter widget in a canvas window item and

returns its item ID.
delete(items) Deletes all matching items, if any.
itemcget(item, option) Returns the current value for an option from a canvas

item.
itemconfig(item, options),
itemconfigure(item, options) Modifies one or more options for all matching items.
coords(item) Returns a tuple containing the coordinates for the item.
coords(items, x0, y0, x1, y1, . . . , xn, yn) Changes the coordinates for all matching items.
bbox(items),
bbox() Returns the bounding box for the given items. If the

specifier is omitted, the bounding box for all items are
returned.

canvasx(screenx),
canvasy(screeny) Converts a window coordinate to a canvas coordinate.
tag bind(item, sequence, callback),
tag bind(item, sequence, callback,"+") Adds an event binding to all matching items. Using the

“+” option, it adds the binding to the previous ones,
otherwise all previous bindings are replaced.

tag unbind(item, sequence) Removes the binding, if any, for the given event se-
quence on all the matching items.

type(item) Returns the type of the given item as a string (one of
“arc”, “bitmap”, “image”, “line”, “oval”, “polygon”,
“rectangle”, “text”, “window”).

lift(item),
tkraise(item)
/ lower(item) Moves the given item to the top / bottom of the can-

vas stack. If multiple items match, they are all moved
while preserving their relative order.

Continued on next page...

3.2 The Different Widgets 36 /75

Canvas Widget Methods - Continued
Method Description
move(item, dx, dy) Moves all matching items dx canvas units to the right,

and dy canvas units downwards. Negative coordinates
specify a displacement in the other direction.

cale(item, xscale, yscale, xoffset, yoffset) Scales matching items according to the given scale fac-
tors. The coordinates for each item are first moved by
-offset, then multiplied with the scale factor, and then
moved back again.

addtagabove(newtag, item) Adds newtag to the item just above the given item in
the stacking order.

addtagall(newtag) Adds newtag to all items on the canvas. This is a short-
cut for addtagwithtag(newtag, ALL).

addtagbelow(newtag, item) Adds newtag to the item just below the given item, in
the stacking order.

addtagclosest(newtag, x, y) Adds newtag to the item closest to the given coordi-
nate.

addtagenclosed(newtag, x1, y1, x2, y2) Adds newtag to all itemscompletelyenclosed by the
given rectangle.

addtagoverlapping(newtag, x1, y1, x2, y2) Adds newtag to all items enclosed by or touching the
given rectangle.

addtagwithtag(newtag, tag) Adds newtag to all items having the given tag.
dtag(item, tag) Removes the given tag from all matching items. If the

tag is omitted, all tags are removed from the matching
items. It is not an error to give a specifier that doesn’t
match any items.

gettags(item) Returns all tags associated with the item, in a tuple.
find above(tag, item) Finds the item just above the given item in the stacking

order.
find all(tag) Finds all items on the canvas. This is a shortcut for

find withtag(tag, ALL).
find below(tag, item) Finds the item just below the given item, in the stack-

ing order.
find closest(tag, x, y) Finds the item closest to the given coordinate.
find enclosed(tag, x1, y1, x2, y2) Finds all itemscompletelyenclosed by the given rect-

angle.
find overlapping(tag, x1, y1, x2, y2) Finds all items enclosed by or touching the given rect-

angle.
find withtag(tag, tag) Finds all items having the given tag.
postscript(options) Generates a postscript representation of the canvas

items. Images and widgets are not included in the out-
put.

Just like widgets, canvas items also have a number of options. All items can, for
example, have their fill color and their border color changed, or set to transparent. The
complete list can be found athttp://www.python.org/.

http://pmw.sourceforge.net/

3.3 Additional Widgets: the Python Mega Widgets (PMW) 37 /75

3.2.15.1 Tagging in Tkinter

Tags represent a very powerful, yet very easy to use feature of Tkinter. The idea behind
them is really simple, and it is not surprising to see them used in the implementation
of sereval widgets, such as the Canvas and the Text widgets. In the Text widget, tags
can be used to mark parts of the text for easier reference. In the canvas widget, the tags
serve to mark on or more widgets for future reference. This discussion will focus on
the use of tags in the Canvas widget.

As was previously mentioned, tags can be used in a many:many relationship: mul-
tiple canvas items can have the same tag and one item can have multiple different tags.
This can be used to create groups of widgets. The most interesting point to make about
tags is that canvas methods acting on items can receive as parameters item IDs or tags
interchangeably. One might wonder what happens to methods that only apply to a sin-
gle item at a time (such as bbox()). Tkinter provides the best possible approach for
these situations by only taking the first item that matches the specified tag. When the
method must be applied to several or all of the items having the tag, Tkinter also pro-
vides an easy solution. The findwithtag() method produces a list of all items having
the tag passed as only parameter. This information can then be used inside a simple for
loop.

In addition to the tags that are added by the user, Tkinter supports two special,
built-in tags, CURRENT and ALL. As expected, the ALL tag identifies all items in
the canvas, while the CURRENT tag is automatically updated, indicating the item over
which the mouse pointer is located. Therefore, a call to canvas.findall() is the same as
a call to findwithtag(ALL). Those two tags are simply handled like any other tag. The
CURRENT constant simply evaluates to the string “current”, while the ALL constant
evaluates to “all”. Therefore, those tags should not be used by the user. Doing so will
not raise any exception, but setting these tags manually will silently fail since they are
managed by Tkinter.

Moreover, the tagbind() and tagunbind() methods can be used to associate event
callbacks to canvas items, thus freeing the canvas from the task of dispatching the event
to the proper item(s). These methods reduce the gap between canvas items and widgets.

3.3 Additional Widgets: the Python Mega Widgets (PMW)

While Tkinter provides a good set of widgets to work with, it does not offer a com-
plete set yet. For example, there is no combo box (an Entry widget combined with
a drop-down list) widget in Tkinter. Luckily enough, there is another package that is
compatible with Tkinter and that provides the elements that are missing: the Python
Mega Widgets. It is available fromhttp://pmw.sourceforge.net/.

http://pmw.sourceforge.net/

4
Geometry Managers and Widget

Placement

4.1 What is Geometry Management?

Geometry management consists of placing widget placement and size on the screen.
Tkinter provides three geometry managers, therefore allowing the user to quickly and
efficiently build user interfaces, with maximal control over the disposition of the wid-
gets. The geometry managers also allow the user make abstraction of the specific
implementation of the GUI on each platform that Tkinter supports, thus making the
design truly portable.

Geometry management implies a great deal of negotiations between the different
widgets and their containers, as well as the windows they are placed in. Geometry
management is not only responsible for the precise position and size of a widget, but
also of this widget’s position and size relative to the other widgets, and of renegotiating
these factors when conditions change, for example when the window is resized.

The subsequent sections will discuss each of the geometry managers in details.

4.2 The “Pack” Geometry Manager

The packer is the quickest way to design user interfaces using Tkinter. It allows the
user the place the widgets relative to their contained widget. It is the most commonly
used geometry manager since it allows a fair amount of flexibility.

The packer positions the slave widgets on the master widget (container) from the
edges to the center, each time using the space left in the master widget by previous
packing operations. The options that can be used in thepack() method are:

4.2 The “Pack” Geometry Manager 39 /75

Option Values Effect
expand YES (1), NO(0) Specifies whether the widget should

expand to fill the available space (at
packing time and on window resize)

fill NONE, X, Y,
BOTH

Specifies how the slave should be re-
sized to fill the available space (if
the slave is smaller than the avail-
able space)

side TOP (default),
BOTTOM, LEFT,
RIGHT

Specifies which side of the master
should be used for the slave.

in (’in’) Widget Packs the slaves inside the widget
passed as a parameter. This option
is usually left out, in which case the
widgets are packed in their parent.
Restriction: widgets can only be
packed inside their parents or de-
scendants of their parent.

padx,pady Integer values Specifies the space that must be left
out between two adjacent widgets.

ipadx, ipady Integer values Specifies the size of the optional in-
ternal border left out when packing.

anchor N, S, W, E,
NW, SW, NE,
SE, NS, EW,
NSEW, CENTER
(default)

Specifies where the widget should
be placed in the space that it has
been allocated by the packer, if this
space is greater than the widget size.

The “Pack” geometry manager defines the following methods for working with wid-
gets:

Method Effect
pack(option=value,. . .)
packconfigure(option=value,. . .)

Packs the widget with the specified
options.

pack forget() The widget is no longer managed
by the Pack manager, but is not de-
stroyed.

pack info() Returns a dictionary containing the
current options for the widget.

packslaves() Returns a list of widget IDs, in the
packing order, which are slaves of
the master widget.

4.3 The “Grid” Geometry Manager 40 / 75

4.3 The “Grid” Geometry Manager

The grid geometry manager is used for more complex layouts. It allows the user to
virtually divide the master widget into several rows and columns, which can then be
used to place slave widgets more precisely. The pack geometry manager would require
the use of multiple nested frames to obtain the same effect.

The grid geometry manager allows the user to build a widget grid using an approach
that is very similar to building tables using HTML. The user builds the table specifying
not only the row and column at which to place the widget, but also the rwo span and
column span values to use for the widget. In addition to that, the sticky option can
allow almost any placement of the widget inside a cell space (if it is bigger than the
widget itself). Combinations of values for the sticky option also allow to resize the
widget, such as EW value, equivalent to an expand option combined with a fill=X for
the packer. The options that can be used in thegrid() method are:

Option Values Effect
row, column Integer values Specifies where the widget should

be positioned in the master grid.
rowspan, columnspan Integer values Specifies the number of rows /

columns the widget must span
across.

in (’in’) Widget Uses the widget passed as a parame-
ter as the master. This option is usu-
ally left out, in which case the wid-
gets are packed in their parent.
Restriction: widgets can only be
packed inside their parents or de-
scendants of their parent.

padx,pady Integer values Specifies the space that must be left
out between two adjacent widgets.

ipadx, ipady Integer values Specifies the size of the optional in-
ternal border left out when packing.

sticky N, S, W, E, NW,
SW, NE, SE, NS,
EW, NSEW

Specifies where the widget should
be placed in the space that it has
been allocated by the grid manager,
if this space is greater than the wid-
get size. Default is to center the
widget, but thegrid() method does
not support the CENTER value for
sticky.

The “Grid” geometry manager defines the following methods for working with wid-
gets:

4.4 The “Place” Geometry Manager 41 /75

Method Effect
grid(option=value,. . .),
grid configure(option=value,. . .)

Places the widget in a grid, using the
specified options.

grid forget(), gridremove() The widget is no longer managed
by the Grid manager, but is not de-
stroyed.

grid info() Returns a dictionary containing the
current options.

grid slaves() Returns a list of widget IDs which
are slaves of the master widget.

grid location(x,y) Returns a (column, row) tuple which
represents the cell in the grid that is
closest to the point (x, y).

grid size() Returns the size of the grid, in the
form of a (column, row) tuple, in
which column is the index of the
first empty column and row the in-
dex of the first empty row.

It is important to note that empty rows and columns are not displayed by the grid
geometry manager, even if a minimum size is specified. Note: The grid manager cannot
be used in combination with the pack manager, as this results in an infinite negociation
loop.

4.4 The “Place” Geometry Manager

The place geometry manager is the most powerful manager of all since it allows ex-
act placement of the widgets inside a master widget (container). However, it is more
difficult to use and usually represents a great amount of overhead that is rarely needed.

The Place geometry manager allows placement of widgets using either exact coor-
dinates (with the x and y options), or as a percentage relative to the size of the master
window (expressed as a float in the range [0.0, 1.0]) with the relx and rely options.
The same principle holds for the widget size (using width / height and/or relwidth /
relheight). The options that can be used in theplace() method are:

4.4 The “Place” Geometry Manager 42 /75

Option Values Effect
anchor N, NE, E, SE,

SW, W, NW (De-
fault), CENTER

Specifies which part of the widget
should be placed at the specfied po-
sition.

bordermode INSIDE,
OUTSIDE

Specifies if the outside border
should be taken into consideration
when placing the widget.

in (’in’) Widget Places the slave in the master passed
as the value for this option.

relwidth, relheight Float [0.0, 1.0] Size of the slave widget, relative to
the size of the master.

relx, rely Float [0.0, 1.0] Relative position of the slave wid-
get.

width, hieght Integer values Absolute width and height of the
slave widget.

x, y Integer Values Absolute position of the slave wid-
get.

The “Place” geometry manager defines the following methods for working with wid-
gets:

Method Effect
place(option=value,. . .)
placeconfigure(option=value,. . .)

Places the widget with the specified
options.

placeforget() The widget is no longer managed
by the Place manager, but is not de-
stroyed.

placeinfo() Returns a dictionary containing the
current options for the widget.

placeslaves() Returns a list of widget IDs which
are slaves of the master widget.

5
Tkinter-specific Topics

5.1 Specifying colors

Tkinter defines several color names that can be easily used as color values in Python
programs. These color names are taken from the names that are provided by X Win-
dows. The complete list is prodided in AppendixA on page55. For a more precise
description of colors, Tkinter allows the use ofcolor strings. These strings start with a
number sign (#) and specify the precise values of the red, green and blue components
of the color. There are three forms of color strings, depending on how many levels each
component is allowed:

#RGB : 4-bit components (12 bits total), 16 levels per component.

#RRGGBB: 8-bit components (24 bits total), 256 levels pre component.

#RRRRGGGGBBBB: 16-bit components, (48 bits total), 65536 levels per component.

R, G and B are single hexadecimal digits (0..F, or 0..f).
For example, “#F00”, “#FF0000” and “#FFFF00000000” all specify a pure red

color. Similarly, “#48A”, “#4080A0” and “#40008000A000” represent the same color.

5.2 Specifying Fonts

Tkinter provides several ways of defining fonts. It provides font descriptors that are
easier to work with than the very precise but too confusing X Window System font
descriptor. X Window System font descriptors are still supported, but they will not be
discussed here since they should be rarely needed. There are two other major kinds of
font descriptors that are available: in Tkinter:

5.2 Specifying Fonts 44 /75

Tuples or Strings: Font can be decribed using an n-tuple of the form:

(family, size, [option1], [option2], . . .).

The font family is in fact its name. It is a string describing the font. For example,
“arial”, “courier”, or “times new roman” are all valid font families. The size is
given as an integer. The remaining options are facultative, and there can be as
many of them as required. The valid options are: normal, roman, bold, italic,
underline and overstrike.

It is also possible to specify a font using a single string if the font name does not
contain any spaces. For example, (“arial”, 10, “italic”, “bold”) is equivalent to
“arial 10 italic bold”.

Font instances: This requires to import a separate module, namedtkFont. This mod-
ules defines theFont class. An instance of this class can be used anywhere a
standard Tkinter font descriptor is valid. The options that are available in the
font class are listed below:

Option Possible values
family String specifying the name of the

font.
size Positive int for size in points, neg-

tive int for size on pixels.
weight One of tkFont.BOLD or tk-

Font.NORMAL
slant One of tkFont.ITALIC or tk-

Font.NORMAL
underline 1 or 0
overstrike 1 or 0

These Font objects have two major advantages over the tuple font descriptors.
First of all, it is possible to use theconfig() method of theFont class to mod-
ify only one property of a font. Using tuples, it is necessary to redescribe the
whole font. This can become useful when responding to mouse movements for
example, where a particular a font could alternate between normal and bold,
keeping every other property fixed.

Also, these fonts can be assigned to variables, which make it possible to assign
the same font to multiple objects. In the eventuality that the font is modifed
usingconfig(), then all widgets sharing the font will reflect the change simul-
taneously.

Here is a small example which demonstrates how to work with Font objects:

Listing 24: A tkFont.Font Example

5.3 Tkinter Variables 45 / 75

from Tkinter import *
import tkFont

root = Tk()
myfont = tkFont.Font(family="arial", size=20, weight=tkFont.BOLD) 5

b1 = Button(root, text="Button 1", font=myfont)
b1.pack()
b2 = Button(root, text="Button 2", font=myfont)
b2.pack()
myfont.config(slant=tkFont.ITALIC) 10

root.mainloop()

This example is much more interesting when coded interactively, so that it is pos-
sible to see both buttons reflect the change in the font.

5.3 Tkinter Variables

Tkinter has a specialVariable class that all other variable subclasses inherit from.
Various Tkinter widgets have options that rely on theVariable class, such as the
“variable” option for Radiobuttons, the “textvariable” option for the Label, etc.

5.3.1 The Need for New Variables

When the Tkinter variables are used for simple tasks, they do not behave differently
than the regular Python variables, apart from the fact that their values have to be han-
dled through method calls, such asget() andset(). The choice behind the imple-
mentation of this master variable class is therefore not obvious. However, by taking a
closer look at what the Variable class offers, the motivation behind it becomes much
more apparent. Tkinter variables provide, in true Tkinter style, the possibility to add
a callback which will be executed when read and write operations are performed on
the variable, and also when the value associated with the variable is undefined. This
allows, for example, to bind aStringVar() instance to aLabel widget, which then
automatically updates its caption when the value of the variable changes.

5.3.2 Using Tkinter Variables

Tkinter provides four descendants of theVariable class:

• StringVar

• IntVar

• DoubleVar

• BooleanVar

5.3 Tkinter Variables 46 / 75

TheVariable class provides the following methods:

Method Description
Private Methods

init (self, master=None) Constructor (an exception is raised
if the master is None, since the con-
structor calls master.tk)

del (self) Destructor
str (self) Returns the name of the variable

Public Methods
set(self,value) Assignsvalue to the variable
trace variable(self, mode, callback) Assigns a callback to the variable.

Mode must be one of ”r”, ”w”, or
”u”. Depending on the value of
mode, callback is executed when
a value is read from the variable,
written to the variable or when its
value becomes undefined, respec-
tively. This method returns the name
of the callback, which is needed to
delete it.

trace vdelete(self, mode, cbname) Deletes the callback with the speci-
fied name and mode.

trace vinfo(self) Returns a list of all of the callback
names associated with the variable
and their respective modes (each
mode - callback name pair is stored
as a tuple).

The Variable class does not implement the get() method. It is only the base class
for all variables, and is not intended for direct use. Instead, each descendant of the
Variable class implements its specific get() method.

Notes:

• Tkinter variables have a del method which frees their associated memory
when they are no longer referenced. Therefore, one should always keep a refer-
ence to a Tkinter variable instance as a global reference or a instance variable.
While this is almost always the case, it might make a difference in some very
specific situations.

• It should be noted that variable options only take parameters which are instances
of theVariable class (or one of its subclasses). If a regular Python variable is
passed as parameter, then it will never receive the appropriate value. That is, the
store and retrieve calls will silently fail. Moreover, it must be mentioned that
the set() method does not do type or range checking on its parameter value.

5.3 Tkinter Variables 47 / 75

It simply stores it, even if it is not of the proper type (Python is untyped, so
this is possible). Therefore, it cannot be used as is inside a try..execute block to
validate data. The get() method, however, will fail if the value associated with
the variable is erroneous. However, at this point, the previous value is lost.

6
Event Handling: bringing applications to

life

Every GUI does not do much without a way to handle events that are generated by the
user. In fact, most of the execution time of graphical applications is spent in the event
loop.

Tkinter provides a very simple mechanism for event handling, but a nonetheless
very precise and powerful one.

6.1 The Idea

Tkinter provides an easy and convenient way to handle events by allowing callback
functions to be associated with any event and any widget. In addition, very precise
events can be directly described and associated with actions. For example, one could
decide to only respond two two specific key press events, pressing the tabulation key
or the carriage return key. While in most other languages / GUI toolkits this would
require responding to the “Key Press” event and checking if the event that occured
matches one of the keys we are interested in, and then executing some code depending
on the result we obtained, Tkinter does it differently. It allows to bind distinct callbacks
to distinct key press events, in our case one event (and one callback) for the tabulation
key and one event for the carriage return key. Thus, Tkinter events do not necessarily
correspond to the common event types, but they can be much more specific. Needless
to say, this is a great advantage, and allows for a much cleaner implementation.

6.2 Event Types and Properties 49 /75

6.2 Event Types and Properties

While event descriptors can be very specific, Tkinter also supports more general events.
Currently, the following event types are available, and can be classified into tree major
categories:

Keyboard events: KeyPress, KeyRelease

Mouse events: ButtonPress, ButtonRelease, Motion, Enter, Leave, MouseWheel

Window events: Visibility, Unmap, Map, Expose, FocusIn, FocusOut, Circulate, Colourmap,
Gravity, Reparent, Property, Destroy, Activate, Deactivate

Each callback that is bound to an event reveices and an instance of the Event class
as parameter when it is invoked. The Event class defines the following properties:

Property Description
char pressed character (as a char)(KeyPress, KeyRelease

only)
delta delta of wheel movement (MouseWheel)
focus boolean which indicates whether the window has the

focus (Enter, Leave only)
height height of the exposed window (Configure, Expose

only)
keycode keycode of the pressed key (KeyPress, KeyRelease

only)
keysym keysym of the the event as a string (KeyPress, KeyRe-

lease only)
keysymnum keysym of the event as a number (KeyPress, KeyRe-

lease only)
num number of the mouse button pressed (1=LEFT,

2=CENTER, 3=RIGHT, etc.) (ButtonPress, Button-
Release only)

serial serial number of the event
state state of the event as a number (ButtonPress, Button-

Release, Enter, KeyPress, KeyRelease, Leave, Motion
only) or string indicating the source of the Visibility
event (one of “VisibilityUnobscured”, “VisibilityPar-
tiallyObscured”, and “VisibilityFullyObscured”

time time at which the event occurred. Under Microsoft
Windows, this is the value returned by the GetTick-
Count() API function.

Continued on next page

6.3 Event Descriptors 50 /75

Continued from previous page
Property Description
type type of the event as a number
x x-position of the mouse relative to the widget
x root x-position of the mouse on the screen relative to the

root (ButtonPress, ButtonRelease, KeyPress, KeyRe-
lease, Motion only)

y y-position of the mouse relative to the widget
y root y-position of the mouse on the screen relative to the

root (ButtonPress, ButtonRelease, KeyPress, KeyRe-
lease, Motion only)

widget widget for which the event occurred
width width of the exposed window (Configure, Expose

only)

6.3 Event Descriptors

In Tkinter, all event handling requires a string description of the event to be bound.
Each of these strings can be divided into three sections, and is usually enclosed in
angular brackets. The general format is as follows:

<Modifier - Type - Qualifier>

Not all three sections are required in order for an event descriptor string to be valid.
In fact, event descriptors only rarely include the three sections. The meaning and the
possible values for each section will de discussed next.

1. Type: The type is often the only required section in an event descriptor. It spec-
ifies the kind or class of the event. The values that it can take are as follows:

6.3 Event Descriptors 51 /75

Value Triggered when . . .
Key a key is pressed while the widget has the focus
KeyRelease a key is pressed while the widget has the focus
Button, ButtonPress a mouse button is pressed on the widget
ButtonRelease a mouse button is released on the widget
Motion the mouse is moved over the widget
Enter the mouse enters a widget
Leave the mouse leaves a widget
FocusIn a widget gets the focus
FocusOut a widget loses the focus
Expose a widget or part of a widget becomes visible
Visibility the visibility of a widget or part of a widget

changes (the state value is one of “VisibilityUnob-
scured”, “VisibilityPartiallyObscured”, and “Visibili-
tyFullyObscured”

Destroy a widget is destroyed
MouseWheel the mouse wheel is activated over a widget

Other event types include Activate, Circulate, Colormap, Configure, Deactivate,
Gravity, Map, Reparant and Unmap.

2. Modifier : The modifier section is optional. If present, it is used to make the
event description more precise by requiring that certain keys or mouse buttons
should be down while for the event to occur. It can also be used to specify that
a particular event has to occur multiple times before its associated callback is
executed. There can be more than one modifier specified for an event descriptor,
provided that they are seperated by spaces or dashes. Whenever modifiers are
present, events mustat leastmatch all of the specified modifiers in order for
their associated callbacks to be executed. That is, if extra modifiers are present,
the callback will still be executed. The values that it can take are as follows:

6.3 Event Descriptors 52 /75

Value Description
Any Event can be triggered in any mode
Alt Alt key must be down for event to be triggered.
Lock Caps Lock must be enabled for event to fire.
Control Control key must be down for event to be triggered.
Meta, M Meta key must be down for event to be triggered.
Mod1, M1 Mod1 key should be help down for event to be trig-

gered.
Mod2, M2 Mod2 key should be help down for event to be trig-

gered.
...
Mod5, M5 Mod5 key should be help down for event to be trig-

gered.
Shift Shift key must be down for event to be triggered.
Button1, B1 Mouse button 1 should be help down for event to be

triggered.
Button2, B2 Mouse button 2 should be help down for event to be

triggered.
...
Button5, B5 Mouse button 5 should be help down for event to be

triggered.
Double The event should occur twice (in a short time period)

before its callback is executed.
Triple The event should occur three times (in a short time pe-

riod) before its callback is executed.

3. Qualifier The qualifier can be any integer from 1 to 5, in which case it specifies
a mouse button. Mouse buttons are numbered from 1 to 5 starting from the left
button (left = 1, center = 2, right = 3, etc.).It can also be a keysym1. Keysyms are
names attributed to specific keys, such as “backslash” or “backspace”.Whenever
a qualifier is specified, the type is not strictly required. It is omitted, then the
default type will be KeyPress for keysym qualifiers and ButtonPress for mouse
button qualifiers.

The event descriptor “< keysym>” is equivalent to “keysym” (without the angular
brackets), provided thatkeysymis not a space or an angular bracket.

Some example of common event descriptors are:

1The current version of Tk defines more than 900 keysyms

6.4 Binding Callbacks to Events 53 /75

<Any-Enter> Triggered when the mouse enters a widget
<Button-1>, <1> Triggered when a left click is done in a widget
<B1-Motion> Triggered when the mouse is dragged over

the widget with the left mouse button being
held down.

<Double-Button-1> Triggered when a widget is double-clicked
with the left mouse button

<Key-A>, <KeyPress-A>, <A>, A Triggered when the key producing the letter
A (caps) is pressed.

6.4 Binding Callbacks to Events

For the application to be able to respond to events, methods or functions have to be as-
sociated with events, so that they are called whenever the events occur. These methods
and functions are referred to ascallbacks. Binding is the process by which a callback
is associated to an event by means of an event descriptor.

There are 3 methods that can be used to bind events to widgets in Tkinter:

1. The bind() method, which can be called on any widget, and in particular a
Toplevel widget (Tkinter makes a difference between Toplevel widgets and other
widgets)

2. Thebind class() method, which binds events to a particular widget class. This
is used internally in order to provide standard bindings for Tkinter widgets. This
function should usually be avoided, as it can often be replaced by implementing
a descendant of the particular widget, and by binding it to the desired callback.

3. Thebind all() method, which binds events for the whole application.

Thebind() method is declared as follows:

bind(self, sequence=None, func=None, add=None)

wheresequence is an event descriptor (as a string),func is the name of the function
to be associated with the event (ie the callback), andadd is a boolean which specifies
thatfunc should be called in addition to the current callback for this event instead of
replacing it. This method returns a function ID which can be used withunbind to
remove a particular binding. Theunbind method is defined as follows:

unbind(self, sequence, funcid=None)

Similarly, thebind class() method is defined as follows:

bind class(self, className, sequence=None, func=None, add=None)

and has its associatedunbind class method which is defined as follows:

undind class(self, className, sequence)

6.5 Unit testing and Graphical User Interfaces: Simulating Events 54 /75

Finally, thebind all() method is defined as follows:

bind(self, sequence=None, func=None, add=None)

while theunbind all() method is defined as follows:

unbind class(self, sequence=None)

The callbacks will receive an Event object as parameter, so they must include this
object in their parameter list. The Event object should be the first parameter for call-
backs which are not part of a class, and the second parameter for class methods (since
the class reference, self, is always the first parameter).

When an event occurs in Tkinter, the event callbacks are called according to their
level of specificity. The most specific event handler is always used, the others are not
called (eg when Return is pressed, a callback associated with the<Return> event will
be executed and one associated with the<KeyPress> event will not be called in the
case where both have been bound to the same widget). Moreover, the callbacks for the
4 different levels of Tkinter’s event handling will be called in sequence, starting with
the widget level, then the Toplevel, the class and then the Application.

If, at a given level, the callback handling must stop, the callback should return the
string “break”. This will prevent any other callbacks from being executed for a given
event. This is especially useful for overriding default behaviour of certain keys (eg.
backspace and tab) which occur at the application level.

6.5 Unit testing and Graphical User Interfaces: Simu-
lating Events

While unit testing is generally simple in usual, console applications, it may be more
difficult to apply this concept in Tkinter applications. How to simulate the effect of the
user clicking buttons and interacting with the widgets? Let’s examine a simple case
first. Assume that the application to be tested only consists of Buttons and one Entry
widget. Also, suppose that each button is associated to adistinct callback, specified
using the “command” option. In this case, it easy to simulate a click on a Button, since
a call tobtn.invoke() would do the trick.

In the case where event binding has taken place, all is not lost. Generating “fake”
events in Tkinter is relatively easy. The Event class acts as some kind of record (or
struct, for those with a C background) which holds all of its information within its
fields. So, by creating a new instance of the event class and specifying the values of
the required fields, it is possible to invoke the methods with a reference to this event
instance as parameter, thus simulating Tkinter’s behaviour.

There is still one minor problem: usually, Tkinter programs are implemented as
classes, and initialization is done in theinit method. So it isnot sufficient to
import the module for the Tkinter application we which to test, we must also have an
instance of its primary class. This is in fact very easy to achieve. First, observe that if
a Tkinter does not call mainloop() at some point, the root window that it creates will
not show up. So, by including all calls to root.mainloop() (and usually root = Tk() and

6.5 Unit testing and Graphical User Interfaces: Simulating Events 55 /75

app = MyApp(root) too) inside a conditional of the formif name == ’ main ’,
we are guaranteed that we can safely create an instance of the MyApp class without
having to worry about it waiting for events indefinitely.

Here is an example from “calctest.py” illustrating this:

from Tkinter import *
import calc
import unittest

calcinst= calc.App(Tk()) 5

classDigitTest(unittest.TestCase):
def testDigBtns(self):

"""C + num ==> num for all num"""
self.DigitBtns = calcinst.btnDigits 10

for btn in self.DigitBtns:
calcinst.btnCClick()
Here, invoke() does not work since
the callback is bound to an event, and was not
specified using the “command” option 15

e = Event()
e.widget = btn
calc.btnDigitClick(e)
self.assertEqual(calc.display.get(), btn.cget("text"))

20

if name == ’__main__’:
unittest.main()

A
Tkinter color names

Color Name Red Green Blue
alice blue 240 248 255
AliceBlue 240 248 255
antique white 250 235 215
AntiqueWhite 250 235 215
AntiqueWhite1 255 239 219
AntiqueWhite2 238 223 204
AntiqueWhite3 205 192 176
AntiqueWhite4 139 131 120
aquamarine 127 255 212
aquamarine1 127 255 212
aquamarine2 118 238 198
aquamarine3 102 205 170
aquamarine4 69 139 116
azure 240 255 255
azure1 240 255 255
azure2 224 238 238
azure3 193 205 205
azure4 131 139 139
beige 245 245 220
bisque 255 228 196
bisque1 255 228 196

Continued on next page...

57 /75

Tkinter color names - Continued
Color Name Red Green Blue

bisque2 238 213 183
bisque3 205 183 158
bisque4 139 125 107
black 0 0 0
blanched almond 255 235 205
BlanchedAlmond 255 235 205
blue 0 0 255
blue violet 138 43 226
blue1 0 0 255
blue2 0 0 238
blue3 0 0 205
blue4 0 0 139
BlueViolet 138 43 226
brown 165 42 42
brown1 255 64 64
brown2 238 59 59
brown3 205 51 51
brown4 139 35 35
burlywood 222 184 135
burlywood1 255 211 155
burlywood2 238 197 145
burlywood3 205 170 125
burlywood4 139 115 85
cadet blue 95 158 160
CadetBlue 95 158 160
CadetBlue1 152 245 255
CadetBlue2 142 229 238
CadetBlue3 122 197 205
CadetBlue4 83 134 139
chartreuse 127 255 0
chartreuse1 127 255 0
chartreuse2 118 238 0
chartreuse3 102 205 0
chartreuse4 69 139 0
chocolate 210 105 30
chocolate1 255 127 36
chocolate2 238 118 33

Continued on next page...

58 /75

Tkinter color names - Continued
Color Name Red Green Blue

chocolate3 205 102 29
chocolate4 139 69 19
coral 255 127 80
coral1 255 114 86
coral2 238 106 80
coral3 205 91 69
coral4 139 62 47
cornflower blue 100 149 237
CornflowerBlue 100 149 237
cornsilk 255 248 220
cornsilk1 255 248 220
cornsilk2 238 232 205
cornsilk3 205 200 177
cornsilk4 139 136 120
cyan 0 255 255
cyan1 0 255 255
cyan2 0 238 238
cyan3 0 205 205
cyan4 0 139 139
dark blue 0 0 139
dark cyan 0 139 139
dark goldenrod 184 134 11
dark gray 169 169 169
dark green 0 100 0
dark grey 169 169 169
dark khaki 189 183 107
dark magenta 139 0 139
dark olive green 85 107 47
dark orange 255 140 0
dark orchid 153 50 204
dark red 139 0 0
dark salmon 233 150 122
dark sea green 143 188 143
dark slate blue 72 61 139
dark slate gray 47 79 79
dark slate grey 47 79 79
dark turquoise 0 206 209

Continued on next page...

59 /75

Tkinter color names - Continued
Color Name Red Green Blue

dark violet 148 0 211
DarkBlue 0 0 139
DarkCyan 0 139 139
DarkGoldenrod 184 134 11
DarkGoldenrod1 255 185 15
DarkGoldenrod2 238 173 14
DarkGoldenrod3 205 149 12
DarkGoldenrod4 139 101 8
DarkGray 169 169 169
DarkGreen 0 100 0
DarkGrey 169 169 169
DarkKhaki 189 183 107
DarkMagenta 139 0 139
DarkOliveGreen 85 107 47
DarkOliveGreen1 202 255 112
DarkOliveGreen2 188 238 104
DarkOliveGreen3 162 205 90
DarkOliveGreen4 110 139 61
DarkOrange 255 140 0
DarkOrange1 255 127 0
DarkOrange2 238 118 0
DarkOrange3 205 102 0
DarkOrange4 139 69 0
DarkOrchid 153 50 204
DarkOrchid1 191 62 255
DarkOrchid2 178 58 238
DarkOrchid3 154 50 205
DarkOrchid4 104 34 139
DarkRed 139 0 0
DarkSalmon 233 150 122
DarkSeaGreen 143 188 143
DarkSeaGreen1 193 255 193
DarkSeaGreen2 180 238 180
DarkSeaGreen3 155 205 155
DarkSeaGreen4 105 139 105
DarkSlateBlue 72 61 139
DarkSlateGray 47 79 79

Continued on next page...

60 /75

Tkinter color names - Continued
Color Name Red Green Blue

DarkSlateGray1 151 255 255
DarkSlateGray2 141 238 238
DarkSlateGray3 121 205 205
DarkSlateGray4 82 139 139
DarkSlateGrey 47 79 79
DarkTurquoise 0 206 209
DarkViolet 148 0 211
deep pink 255 20 147
deep sky blue 0 191 255
DeepPink 255 20 147
DeepPink1 255 20 147
DeepPink2 238 18 137
DeepPink3 205 16 118
DeepPink4 139 10 80
DeepSkyBlue 0 191 255
DeepSkyBlue1 0 191 255
DeepSkyBlue2 0 178 238
DeepSkyBlue3 0 154 205
DeepSkyBlue4 0 104 139
dim gray 105 105 105
dim grey 105 105 105
DimGray 105 105 105
DimGrey 105 105 105
dodger blue 30 144 255
DodgerBlue 30 144 255
DodgerBlue1 30 144 255
DodgerBlue2 28 134 238
DodgerBlue3 24 116 205
DodgerBlue4 16 78 139
firebrick 178 34 34
firebrick1 255 48 48
firebrick2 238 44 44
firebrick3 205 38 38
firebrick4 139 26 26
floral white 255 250 240
FloralWhite 255 250 240
forest green 34 139 34

Continued on next page...

61 /75

Tkinter color names - Continued
Color Name Red Green Blue
ForestGreen 34 139 34
gainsboro 220 220 220
ghost white 248 248 255
GhostWhite 248 248 255
gold 255 215 0
gold1 255 215 0
gold2 238 201 0
gold3 205 173 0
gold4 139 117 0
goldenrod 218 165 32
goldenrod1 255 193 37
goldenrod2 238 180 34
goldenrod3 205 155 29
goldenrod4 139 105 20
gray 190 190 190
gray0 0 0 0
gray1 3 3 3
gray10 26 26 26
gray100 255 255 255
gray11 28 28 28
gray12 31 31 31
gray13 33 33 33
gray14 36 36 36
gray15 38 38 38
gray16 41 41 41
gray17 43 43 43
gray18 46 46 46
gray19 48 48 48
gray2 5 5 5
gray20 51 51 51
gray21 54 54 54
gray22 56 56 56
gray23 59 59 59
gray24 61 61 61
gray25 64 64 64
gray26 66 66 66
gray27 69 69 69

Continued on next page...

62 /75

Tkinter color names - Continued
Color Name Red Green Blue
gray28 71 71 71
gray29 74 74 74
gray3 8 8 8
gray30 77 77 77
gray31 79 79 79
gray32 82 82 82
gray33 84 84 84
gray34 87 87 87
gray35 89 89 89
gray36 92 92 92
gray37 94 94 94
gray38 97 97 97
gray39 99 99 99
gray4 10 10 10
gray40 102 102 102
gray41 105 105 105
gray42 107 107 107
gray43 110 110 110
gray44 112 112 112
gray45 115 115 115
gray46 117 117 117
gray47 120 120 120
gray48 122 122 122
gray49 125 125 125
gray5 13 13 13
gray50 127 127 127
gray51 130 130 130
gray52 133 133 133
gray53 135 135 135
gray54 138 138 138
gray55 140 140 140
gray56 143 143 143
gray57 145 145 145
gray58 148 148 148
gray59 150 150 150
gray6 15 15 15
gray60 153 153 153

Continued on next page...

63 /75

Tkinter color names - Continued
Color Name Red Green Blue
gray61 156 156 156
gray62 158 158 158
gray63 161 161 161
gray64 163 163 163
gray65 166 166 166
gray66 168 168 168
gray67 171 171 171
gray68 173 173 173
gray69 176 176 176
gray7 18 18 18
gray70 179 179 179
gray71 181 181 181
gray72 184 184 184
gray73 186 186 186
gray74 189 189 189
gray75 191 191 191
gray76 194 194 194
gray77 196 196 196
gray78 199 199 199
gray79 201 201 201
gray8 20 20 20
gray80 204 204 204
gray81 207 207 207
gray82 209 209 209
gray83 212 212 212
gray84 214 214 214
gray85 217 217 217
gray86 219 219 219
gray87 222 222 222
gray88 224 224 224
gray89 227 227 227
gray9 23 23 23
gray90 229 229 229
gray91 232 232 232
gray92 235 235 235
gray93 237 237 237
gray94 240 240 240

Continued on next page...

64 /75

Tkinter color names - Continued
Color Name Red Green Blue
gray95 242 242 242
gray96 245 245 245
gray97 247 247 247
gray98 250 250 250
gray99 252 252 252
green 0 255 0
green yellow 173 255 47
green1 0 255 0
green2 0 238 0
green3 0 205 0
green4 0 139 0
GreenYellow 173 255 47
grey 190 190 190
grey0 0 0 0
grey1 3 3 3
grey10 26 26 26
grey100 255 255 255
grey11 28 28 28
grey12 31 31 31
grey13 33 33 33
grey14 36 36 36
grey15 38 38 38
grey16 41 41 41
grey17 43 43 43
grey18 46 46 46
grey19 48 48 48
grey2 5 5 5
grey20 51 51 51
grey21 54 54 54
grey22 56 56 56
grey23 59 59 59
grey24 61 61 61
grey25 64 64 64
grey26 66 66 66
grey27 69 69 69
grey28 71 71 71
grey29 74 74 74

Continued on next page...

65 /75

Tkinter color names - Continued
Color Name Red Green Blue
grey3 8 8 8
grey30 77 77 77
grey31 79 79 79
grey32 82 82 82
grey33 84 84 84
grey34 87 87 87
grey35 89 89 89
grey36 92 92 92
grey37 94 94 94
grey38 97 97 97
grey39 99 99 99
grey4 10 10 10
grey40 102 102 102
grey41 105 105 105
grey42 107 107 107
grey43 110 110 110
grey44 112 112 112
grey45 115 115 115
grey46 117 117 117
grey47 120 120 120
grey48 122 122 122
grey49 125 125 125
grey5 13 13 13
grey50 127 127 127
grey51 130 130 130
grey52 133 133 133
grey53 135 135 135
grey54 138 138 138
grey55 140 140 140
grey56 143 143 143
grey57 145 145 145
grey58 148 148 148
grey59 150 150 150
grey6 15 15 15
grey60 153 153 153
grey61 156 156 156
grey62 158 158 158

Continued on next page...

66 /75

Tkinter color names - Continued
Color Name Red Green Blue
grey63 161 161 161
grey64 163 163 163
grey65 166 166 166
grey66 168 168 168
grey67 171 171 171
grey68 173 173 173
grey69 176 176 176
grey7 18 18 18
grey70 179 179 179
grey71 181 181 181
grey72 184 184 184
grey73 186 186 186
grey74 189 189 189
grey75 191 191 191
grey76 194 194 194
grey77 196 196 196
grey78 199 199 199
grey79 201 201 201
grey8 20 20 20
grey80 204 204 204
grey81 207 207 207
grey82 209 209 209
grey83 212 212 212
grey84 214 214 214
grey85 217 217 217
grey86 219 219 219
grey87 222 222 222
grey88 224 224 224
grey89 227 227 227
grey9 23 23 23
grey90 229 229 229
grey91 232 232 232
grey92 235 235 235
grey93 237 237 237
grey94 240 240 240
grey95 242 242 242
grey96 245 245 245

Continued on next page...

67 /75

Tkinter color names - Continued
Color Name Red Green Blue

grey97 247 247 247
grey98 250 250 250
grey99 252 252 252
honeydew 240 255 240
honeydew1 240 255 240
honeydew2 224 238 224
honeydew3 193 205 193
honeydew4 131 139 131
hot pink 255 105 180
HotPink 255 105 180
HotPink1 255 110 180
HotPink2 238 106 167
HotPink3 205 96 144
HotPink4 139 58 98
indian red 205 92 92
IndianRed 205 92 92
IndianRed1 255 106 106
IndianRed2 238 99 99
IndianRed3 205 85 85
IndianRed4 139 58 58
ivory 255 255 240
ivory1 255 255 240
ivory2 238 238 224
ivory3 205 205 193
ivory4 139 139 131
khaki 240 230 140
khaki1 255 246 143
khaki2 238 230 133
khaki3 205 198 115
khaki4 139 134 78
lavender 230 230 250
lavender blush 255 240 245
LavenderBlush 255 240 245
LavenderBlush1 255 240 245
LavenderBlush2 238 224 229
LavenderBlush3 205 193 197
LavenderBlush4 139 131 134

Continued on next page...

68 /75

Tkinter color names - Continued
Color Name Red Green Blue

lawn green 124 252 0
LawnGreen 124 252 0
lemon chiffon 255 250 205
LemonChiffon 255 250 205
LemonChiffon1 255 250 205
LemonChiffon2 238 233 191
LemonChiffon3 205 201 165
LemonChiffon4 139 137 112
light blue 173 216 230
light coral 240 128 128
light cyan 224 255 255
light goldenrod 238 221 130
light goldenrod yellow 250 250 210
light gray 211 211 211
light green 144 238 144
light grey 211 211 211
light pink 255 182 193
light salmon 255 160 122
light sea green 32 178 170
light sky blue 135 206 250
light slate blue 132 112 255
light slate gray 119 136 153
light slate grey 119 136 153
light steel blue 176 196 222
light yellow 255 255 224
LightBlue 173 216 230
LightBlue1 191 239 255
LightBlue2 178 223 238
LightBlue3 154 192 205
LightBlue4 104 131 139
LightCoral 240 128 128
LightCyan 224 255 255
LightCyan1 224 255 255
LightCyan2 209 238 238
LightCyan3 180 205 205
LightCyan4 122 139 139
LightGoldenrod 238 221 130

Continued on next page...

69 /75

Tkinter color names - Continued
Color Name Red Green Blue

LightGoldenrod1 255 236 139
LightGoldenrod2 238 220 130
LightGoldenrod3 205 190 112
LightGoldenrod4 139 129 76
LightGoldenrodYellow 250 250 210
LightGray 211 211 211
LightGreen 144 238 144
LightGrey 211 211 211
LightPink 255 182 193
LightPink1 255 174 185
LightPink2 238 162 173
LightPink3 205 140 149
LightPink4 139 95 101
LightSalmon 255 160 122
LightSalmon1 255 160 122
LightSalmon2 238 149 114
LightSalmon3 205 129 98
LightSalmon4 139 87 66
LightSeaGreen 32 178 170
LightSkyBlue 135 206 250
LightSkyBlue1 176 226 255
LightSkyBlue2 164 211 238
LightSkyBlue3 141 182 205
LightSkyBlue4 96 123 139
LightSlateBlue 132 112 255
LightSlateGray 119 136 153
LightSlateGrey 119 136 153
LightSteelBlue 176 196 222
LightSteelBlue1 202 225 255
LightSteelBlue2 188 210 238
LightSteelBlue3 162 181 205
LightSteelBlue4 110 123 139
LightYellow 255 255 224
LightYellow1 255 255 224
LightYellow2 238 238 209
LightYellow3 205 205 180
LightYellow4 139 139 122

Continued on next page...

70 /75

Tkinter color names - Continued
Color Name Red Green Blue

lime green 50 205 50
LimeGreen 50 205 50
linen 250 240 230
magenta 255 0 255
magenta1 255 0 255
magenta2 238 0 238
magenta3 205 0 205
magenta4 139 0 139
maroon 176 48 96
maroon1 255 52 179
maroon2 238 48 167
maroon3 205 41 144
maroon4 139 28 98
medium aquamarine 102 205 170
medium blue 0 0 205
medium orchid 186 85 211
medium purple 147 112 219
medium sea green 60 179 113
medium slate blue 123 104 238
medium spring green 0 250 154
medium turquoise 72 209 204
medium violet red 199 21 133
MediumAquamarine 102 205 170
MediumBlue 0 0 205
MediumOrchid 186 85 211
MediumOrchid1 224 102 255
MediumOrchid2 209 95 238
MediumOrchid3 180 82 205
MediumOrchid4 122 55 139
MediumPurple 147 112 219
MediumPurple1 171 130 255
MediumPurple2 159 121 238
MediumPurple3 137 104 205
MediumPurple4 93 71 139
MediumSeaGreen 60 179 113
MediumSlateBlue 123 104 238
MediumSpringGreen 0 250 154

Continued on next page...

71 /75

Tkinter color names - Continued
Color Name Red Green Blue

MediumTurquoise 72 209 204
MediumVioletRed 199 21 133
midnight blue 25 25 112
MidnightBlue 25 25 112
mint cream 245 255 250
MintCream 245 255 250
misty rose 255 228 225
MistyRose 255 228 225
MistyRose1 255 228 225
MistyRose2 238 213 210
MistyRose3 205 183 181
MistyRose4 139 125 123
moccasin 255 228 181
navajo white 255 222 173
NavajoWhite 255 222 173
NavajoWhite1 255 222 173
NavajoWhite2 238 207 161
NavajoWhite3 205 179 139
NavajoWhite4 139 121 94
navy 0 0 128
navy blue 0 0 128
NavyBlue 0 0 128
old lace 253 245 230
OldLace 253 245 230
olive drab 107 142 35
OliveDrab 107 142 35
OliveDrab1 192 255 62
OliveDrab2 179 238 58
OliveDrab3 154 205 50
OliveDrab4 105 139 34
orange 255 165 0
orange red 255 69 0
orange1 255 165 0
orange2 238 154 0
orange3 205 133 0
orange4 139 90 0
OrangeRed 255 69 0

Continued on next page...

72 /75

Tkinter color names - Continued
Color Name Red Green Blue

OrangeRed1 255 69 0
OrangeRed2 238 64 0
OrangeRed3 205 55 0
OrangeRed4 139 37 0
orchid 218 112 214
orchid1 255 131 250
orchid2 238 122 233
orchid3 205 105 201
orchid4 139 71 137
pale goldenrod 238 232 170
pale green 152 251 152
pale turquoise 175 238 238
pale violet red 219 112 147
PaleGoldenrod 238 232 170
PaleGreen 152 251 152
PaleGreen1 154 255 154
PaleGreen2 144 238 144
PaleGreen3 124 205 124
PaleGreen4 84 139 84
PaleTurquoise 175 238 238
PaleTurquoise1 187 255 255
PaleTurquoise2 174 238 238
PaleTurquoise3 150 205 205
PaleTurquoise4 102 139 139
PaleVioletRed 219 112 147
PaleVioletRed1 255 130 171
PaleVioletRed2 238 121 159
PaleVioletRed3 205 104 137
PaleVioletRed4 139 71 93
papaya whip 255 239 213
PapayaWhip 255 239 213
peach puff 255 218 185
PeachPuff 255 218 185
PeachPuff1 255 218 185
PeachPuff2 238 203 173
PeachPuff3 205 175 149
PeachPuff4 139 119 101

Continued on next page...

73 /75

Tkinter color names - Continued
Color Name Red Green Blue
peru 205 133 63
pink 255 192 203
pink1 255 181 197
pink2 238 169 184
pink3 205 145 158
pink4 139 99 108
plum 221 160 221
plum1 255 187 255
plum2 238 174 238
plum3 205 150 205
plum4 139 102 139
powder blue 176 224 230
PowderBlue 176 224 230
purple 160 32 240
purple1 155 48 255
purple2 145 44 238
purple3 125 38 205
purple4 85 26 139
red 255 0 0
red1 255 0 0
red2 238 0 0
red3 205 0 0
red4 139 0 0
rosy brown 188 143 143
RosyBrown 188 143 143
RosyBrown1 255 193 193
RosyBrown2 238 180 180
RosyBrown3 205 155 155
RosyBrown4 139 105 105
royal blue 65 105 225
RoyalBlue 65 105 225
RoyalBlue1 72 118 255
RoyalBlue2 67 110 238
RoyalBlue3 58 95 205
RoyalBlue4 39 64 139
saddle brown 139 69 19
SaddleBrown 139 69 19

Continued on next page...

74 /75

Tkinter color names - Continued
Color Name Red Green Blue
salmon 250 128 114
salmon1 255 140 105
salmon2 238 130 98
salmon3 205 112 84
salmon4 139 76 57
sandy brown 244 164 96
SandyBrown 244 164 96
sea green 46 139 87
SeaGreen 46 139 87
SeaGreen1 84 255 159
SeaGreen2 78 238 148
SeaGreen3 67 205 128
SeaGreen4 46 139 87
seashell 255 245 238
seashell1 255 245 238
seashell2 238 229 222
seashell3 205 197 191
seashell4 139 134 130
sienna 160 82 45
sienna1 255 130 71
sienna2 238 121 66
sienna3 205 104 57
sienna4 139 71 38
sky blue 135 206 235
SkyBlue 135 206 235
SkyBlue1 135 206 255
SkyBlue2 126 192 238
SkyBlue3 108 166 205
SkyBlue4 74 112 139
slate blue 106 90 205
slate gray 112 128 144
slate grey 112 128 144
SlateBlue 106 90 205
SlateBlue1 131 111 255
SlateBlue2 122 103 238
SlateBlue3 105 89 205
SlateBlue4 71 60 139

Continued on next page...

75 /75

Tkinter color names - Continued
Color Name Red Green Blue
SlateGray 112 128 144
SlateGray1 198 226 255
SlateGray2 185 211 238
SlateGray3 159 182 205
SlateGray4 108 123 139
SlateGrey 112 128 144
snow 255 250 250
snow1 255 250 250
snow2 238 233 233
snow3 205 201 201
snow4 139 137 137
spring green 0 255 127
SpringGreen 0 255 127
SpringGreen1 0 255 127
SpringGreen2 0 238 118
SpringGreen3 0 205 102
SpringGreen4 0 139 69
steel blue 70 130 180
SteelBlue 70 130 180
SteelBlue1 99 184 255
SteelBlue2 92 172 238
SteelBlue3 79 148 205
SteelBlue4 54 100 139
tan 210 180 140
tan1 255 165 79
tan2 238 154 73
tan3 205 133 63
tan4 139 90 43
thistle 216 191 216
thistle1 255 225 255
thistle2 238 210 238
thistle3 205 181 205
thistle4 139 123 139
tomato 255 99 71
tomato1 255 99 71
tomato2 238 92 66
tomato3 205 79 57

Continued on next page...

76 /75

Tkinter color names - Continued
Color Name Red Green Blue
tomato4 139 54 38
turquoise 64 224 208
turquoise1 0 245 255
turquoise2 0 229 238
turquoise3 0 197 205
turquoise4 0 134 139
violet 238 130 238
violet red 208 32 144
VioletRed 208 32 144
VioletRed1 255 62 150
VioletRed2 238 58 140
VioletRed3 205 50 120
VioletRed4 139 34 82
wheat 245 222 179
wheat1 255 231 186
wheat2 238 216 174
wheat3 205 186 150
wheat4 139 126 102
white 255 255 255
white smoke 245 245 245
WhiteSmoke 245 245 245
yellow 255 255 0
yellow green 154 205 50
yellow1 255 255 0
yellow2 238 238 0
yellow3 205 205 0
yellow4 139 139 0
YellowGreen 154 205 50

	Overview of the Python Language
	Main Features
	Language Features
	Literals
	Variables
	Operators
	Data Structures
	Control Structures and the range() Function
	Function Definitions and Function Calls
	Classes

	Python and Tkinter for RAD and Prototyping
	Designing User Interfaces
	What is Tkinter?
	Why Tkinter?
	Nothing is perfect …
	Show me what you can do!

	Overview of Tkinter Widgets
	What is a Widget
	The Different Widgets
	Toplevel
	Button
	Checkbutton
	Entry
	Frame
	Label
	Listbox
	Menu
	Message
	OptionMenu
	Radiobutton
	Scale
	Scrollbar
	Text
	Canvas

	Additional Widgets: the Python Mega Widgets (PMW)

	Geometry Managers and Widget Placement
	What is Geometry Management?
	The ``Pack'' Geometry Manager
	The ``Grid'' Geometry Manager
	The ``Place'' Geometry Manager

	Tkinter-specific Topics
	Specifying colors
	Specifying Fonts
	Tkinter Variables
	The Need for New Variables
	Using Tkinter Variables

	Event Handling: bringing applications to life
	The Idea
	Event Types and Properties
	Event Descriptors
	Binding Callbacks to Events
	Unit testing and Graphical User Interfaces: Simulating Events

	Tkinter color names

